24 research outputs found

    Numerical modelling of the temperature distribution in a two-phase closed thermosyphon

    Get PDF
    Interest in the use of heat pipe technology for heat recovery and energy saving in a vast range of engineering applications has been on the rise in recent years. Heat pipes are playing a more important role in many industrial applications, particularly in improving the thermal performance of heat exchangers and increasing energy savings in applications with commercial use. In this paper, a comprehensive CFD modelling was built to simulate the details of the two-phase flow and heat transfer phenomena during the operation of a wickless heat pipe or thermosyphon, that otherwise could not be visualised by empirical or experimental work. Water was used as the working fluid. The volume of the fluid (VOF) model in ANSYS FLUENT was used for the simulation. The evaporation, condensation and phase change processes in a thermosyphon were dealt with by adding a user-defined function (UDF) to the FLUENT code. The simulation results were compared with experimental measurements at the same condition. The simulation was successful in reproducing the heat and mass transfer processes in a thermosyphon. Good agreement was observed between CFD predicted temperature profiles and experimental temperature data.The Saudi Cultural Bureau in London, the Ministry of Higher Education and the Mechanical Engineering Department, Umm Al-Qura University

    Applying Architectural Analysis for Current Software Systems: A Case Study of KFC and Pizza Hut Online Food Ordering Systems in Malaysia

    Get PDF
    The main aim of this study is to discover the ability in analyzing, criticizing and providing suggestion in improving the selected important properties of a software application using architectural analysis dimensions. The researchers selected KFC and Pizza Hut online food ordering systems in Malaysia for the case study purpose. These two selected systems are critically analyzed using seven architectural dimensions such as goals of analysis, scope of analysis, primary architectural concern being analyzed, level of formality of architectural models, type of analysis, level of automation, system stakeholders who are interested in analysis. The finding suggests that there are some characteristics provided by Pizza Hut system which are better than KFC system. Furthermore, details of the findings and discussion are highlighted from seven different aspects of analysis which have been carefully studied and very well analyzed on two popular online food ordering systems

    SRPTackle: A semi-automated requirements prioritisation technique for scalable requirements of software system projects

    Get PDF
    ContextRequirement prioritisation (RP) is often used to select the most important system requirements as perceived by system stakeholders. RP plays a vital role in ensuring the development of a quality system with defined constraints. However, a closer look at existing RP techniques reveals that these techniques suffer from some key challenges, such as scalability, lack of quantification, insufficient prioritisation of participating stakeholders, overreliance on the participation of professional expertise, lack of automation and excessive time consumption. These key challenges serve as the motivation for the present research.ObjectiveThis study aims to propose a new semiautomated scalable prioritisation technique called ‘SRPTackle’ to address the key challenges.MethodSRPTackle provides a semiautomated process based on a combination of a constructed requirement priority value formulation function using a multi-criteria decision-making method (i.e. weighted sum model), clustering algorithms (K-means and K-means++) and a binary search tree to minimise the need for expert involvement and increase efficiency. The effectiveness of SRPTackle is assessed by conducting seven experiments using a benchmark dataset from a large actual software project.ResultsExperiment results reveal that SRPTackle can obtain 93.0% and 94.65% as minimum and maximum accuracy percentages, respectively. These values are better than those of alternative techniques. The findings also demonstrate the capability of SRPTackle to prioritise large-scale requirements with reduced time consumption and its effectiveness in addressing the key challenges in comparison with other techniques.ConclusionWith the time effectiveness, ability to scale well with numerous requirements, automation and clear implementation guidelines of SRPTackle, project managers can perform RP for large-scale requirements in a proper manner, without necessitating an extensive amount of effort (e.g. tedious manual processes, need for the involvement of experts and time workload)

    Latin hypercube sampling Jaya algorithm based strategy for T-way test suite generation

    Get PDF
    T-way testing is a sampling strategy that generates a subset of test cases from a pool of possible tests. Many t-way testing strategies appear in the literature to-date ranging from general computational ones to meta-heuristic based. Owing to its performance, man the meta-heuristic based t-way strategies have gained significant attention recently (e.g. Particle Swarm Optimization, Genetic Algorithm, Ant Colony Algorithm, Harmony Search, Jaya Algorithm and Cuckoo Search). Jaya Algorithm (JA) is a new metaheuristic algorithm, has been used for solving different problems. However, losing the search's diversity is a common issue in the metaheuristic algorithm. In order to enhance JA's diversity, enhanced Jaya Algorithm strategy called Latin Hypercube Sampling Jaya Algorithm (LHS-JA) for Test Suite Generation is proposed. Latin Hypercube Sampling (LHS) is a sampling approach that can be used efficiently to improve search diversity. To evaluate the efficiency of LHS-JA, LHS-JA is compared against existing metaheuristic-based t-way strategies. Experimental results have shown promising results as LHS-JA can compete with existing t-way strategies

    Optimization of SC–CO2 extraction of zerumbone from Zingiber zerumbet (L) Smith

    Get PDF
    Response surface methodology (RSM) was applied to optimize the variables affecting the Supercritical carbon dioxide (SC-CO₂) extraction of non-polar compounds from Zingiber zerumbet using the Box-Behnken design (BBD). Dependent variables were the percentage of the chemical components in the ginger vis a vis α-caryophyllene (y ₁), camphene (y ₂), and zerumbone (2,6,10-cycloundecatrien-1-one, 2,6,9,9-tetramethyl-) (y ₃). Pressure was the most significant parameter affecting the amount of each compound extracted. When temperature was kept constant and pressure was increased, all of the dependent variables increased concomitantly. Since pressure and temperature are two of the major influential factors in the extraction using SC-CO₂, any combination of these two parameters could be selected to ascertain the optimum combination for a particular compound in the extract. Extraction at 30°C and 55MPa with total amount of 30g of CO₂ used was found to maximize all the responses

    Iatrogenic air embolism: pathoanatomy, thromboinflammation, endotheliopathy, and therapies

    Get PDF
    Iatrogenic vascular air embolism is a relatively infrequent event but is associated with significant morbidity and mortality. These emboli can arise in many clinical settings such as neurosurgery, cardiac surgery, and liver transplantation, but more recently, endoscopy, hemodialysis, thoracentesis, tissue biopsy, angiography, and central and peripheral venous access and removal have overtaken surgery and trauma as significant causes of vascular air embolism. The true incidence may be greater since many of these air emboli are asymptomatic and frequently go undiagnosed or unreported. Due to the rarity of vascular air embolism and because of the many manifestations, diagnoses can be difficult and require immediate therapeutic intervention. An iatrogenic air embolism can result in both venous and arterial emboli whose anatomic locations dictate the clinical course. Most clinically significant iatrogenic air emboli are caused by arterial obstruction of small vessels because the pulmonary gas exchange filters the more frequent, smaller volume bubbles that gain access to the venous circulation. However, there is a subset of patients with venous air emboli caused by larger volumes of air who present with more protean manifestations. There have been significant gains in the understanding of the interactions of fluid dynamics, hemostasis, and inflammation caused by air emboli due to in vitro and in vivo studies on flow dynamics of bubbles in small vessels. Intensive research regarding the thromboinflammatory changes at the level of the endothelium has been described recently. The obstruction of vessels by air emboli causes immediate pathoanatomic and immunologic and thromboinflammatory responses at the level of the endothelium. In this review, we describe those immunologic and thromboinflammatory responses at the level of the endothelium as well as evaluate traditional and novel forms of therapy for this rare and often unrecognized clinical condition

    Preventing Thrombohemorrhagic Complications of Heparinized COVID-19 Patients Using Adjunctive Thromboelastography: A Retrospective Study

    Get PDF
    BACKGROUND: The treatment of COVID-19 patients with heparin is not always effective in preventing thrombotic complications, but can also be associated with bleeding complications, suggesting a balanced approach to anticoagulation is needed. A prior pilot study supported that thromboelastography and conventional coagulation tests could predict hemorrhage in COVID-19 in patients treated with unfractionated heparin or enoxaparin, but did not evaluate the risk of thrombosis. METHODS: This single-center, retrospective study included 79 severely ill COVID-19 patients anticoagulated with intermediate or therapeutic dose unfractionated heparin. Two stepwise logistic regression models were performed with bleeding or thrombosis as the dependent variable, and thromboelastography parameters and conventional coagulation tests as the independent variables. RESULTS: Among all 79 patients, 12 (15.2%) had bleeding events, and 20 (25.3%) had thrombosis. Multivariate logistic regression analysis identified a prediction model for bleeding (adjusted R2 = 0.787, p < 0.001) comprised of increased reaction time (p = 0.016), decreased fibrinogen (p = 0.006), decreased D-dimer (p = 0.063), and increased activated partial thromboplastin time (p = 0.084). Multivariate analysis of thrombosis identified a weak prediction model (adjusted R2 = 0.348, p < 0.001) comprised of increased D-dimer (p < 0.001), decreased reaction time (p = 0.002), increased maximum amplitude (p < 0.001), and decreased alpha angle (p = 0.014). Adjunctive thromboelastography decreased the use of packed red cells (p = 0.031) and fresh frozen plasma (p < 0.001). CONCLUSIONS: Significantly, this study demonstrates the need for a precision-based titration strategy of anticoagulation for hospitalized COVID-19 patients. Since severely ill COVID-19 patients may switch between thrombotic or hemorrhagic phenotypes or express both simultaneously, institutions may reduce these complications by developing their own titration strategy using daily conventional coagulation tests with adjunctive thromboelastography

    SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and non-traumatic shock

    Get PDF
    Irrespective of the reason for hypoperfusion, hypocoagulable and/or hyperfibrinolytic hemostatic aberrancies afflict up to one-quarter of critically ill patients in shock. Intensivists and traumatologists have embraced the concept of SHock-INduced Endotheliopathy (SHINE) as a foundational derangement in progressive shock wherein sympatho-adrenal activation may cause systemic endothelial injury. The pro-thrombotic endothelium lends to micro-thrombosis, enacting a cycle of worsening perfusion and increasing catecholamines, endothelial injury, de-endothelialization, and multiple organ failure. The hypocoagulable/hyperfibrinolytic hemostatic phenotype is thought to be driven by endothelial release of anti-thrombogenic mediators to the bloodstream and perivascular sympathetic nerve release of tissue plasminogen activator directly into the microvasculature. In the shock state, this hemostatic phenotype may be a counterbalancing, yet maladaptive, attempt to restore blood flow against a systemically pro-thrombotic endothelium and increased blood viscosity. We therefore review endothelial physiology with emphasis on glycocalyx function, unique biomarkers, and coagulofibrinolytic mediators, setting the stage for understanding the pathophysiology and hemostatic phenotypes of SHINE in various etiologies of shock. We propose that the hyperfibrinolytic phenotype is exemplified in progressive shock whether related to trauma-induced coagulopathy, sepsis-induced coagulopathy, or post-cardiac arrest syndrome-associated coagulopathy. Regardless of the initial insult, SHINE appears to be a catecholamine-driven entity which early in the disease course may manifest as hyper- or hypocoagulopathic and hyper- or hypofibrinolytic hemostatic imbalance. Moreover, these hemostatic derangements may rapidly evolve along the thrombohemorrhagic spectrum depending on the etiology, timing, and methods of resuscitation. Given the intricate hemochemical makeup and changes during these shock states, macroscopic whole blood tests of coagulative kinetics and clot strength serve as clinically useful and simple means for hemostasis phenotyping. We suggest that viscoelastic hemostatic assays such as thromboelastography (TEG) and rotational thromboelastometry (ROTEM) are currently the most applicable clinical tools for assaying global hemostatic function—including fibrinolysis—to enable dynamic resuscitation with blood products and hemostatic adjuncts for those patients with thrombotic and/or hemorrhagic complications in shock states

    Viscoelastic Testing and Coagulopathy of Traumatic Brain Injury

    Get PDF
    A unique coagulopathy often manifests following traumatic brain injury, leading the clinician down a difficult decision path on appropriate prophylaxis and therapy. Conventional coagulation assays—such as prothrombin time, partial thromboplastin time, and international normalized ratio—have historically been utilized to assess hemostasis and guide treatment following traumatic brain injury. However, these plasma-based assays alone often lack the sensitivity to diagnose and adequately treat coagulopathy associated with traumatic brain injury. Here, we review the whole blood coagulation assays termed viscoelastic tests and their use in traumatic brain injury. Modified viscoelastic tests with platelet function assays have helped elucidate the underlying pathophysiology and guide clinical decisions in a goal-directed fashion. Platelet dysfunction appears to underlie most coagulopathies in this patient population, particularly at the adenosine diphosphate and/or arachidonic acid receptors. Future research will focus not only on the utility of viscoelastic tests in diagnosing coagulopathy in traumatic brain injury, but also on better defining the use of these tests as evidence-based and/or precision-based tools to improve patient outcomes
    corecore