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A B S T R A C T   

Context: Requirement prioritisation (RP) is often used to select the most important system requirements as perceived by system stakeholders. RP plays a vital role in 
ensuring the development of a quality system with defined constraints. However, a closer look at existing RP techniques reveals that these techniques suffer from 
some key challenges, such as scalability, lack of quantification, insufficient prioritisation of participating stakeholders, overreliance on the participation of pro-
fessional expertise, lack of automation and excessive time consumption. These key challenges serve as the motivation for the present research. 
Objective: This study aims to propose a new semiautomated scalable prioritisation technique called ‘SRPTackle’ to address the key challenges. 
Method: SRPTackle provides a semiautomated process based on a combination of a constructed requirement priority value formulation function using a multi-criteria 
decision-making method (i.e. weighted sum model), clustering algorithms (K-means and K-means++) and a binary search tree to minimise the need for expert 
involvement and increase efficiency. The effectiveness of SRPTackle is assessed by conducting seven experiments using a benchmark dataset from a large actual 
software project. 
Results: Experiment results reveal that SRPTackle can obtain 93.0% and 94.65% as minimum and maximum accuracy percentages, respectively. These values are 
better than those of alternative techniques. The findings also demonstrate the capability of SRPTackle to prioritise large-scale requirements with reduced time 
consumption and its effectiveness in addressing the key challenges in comparison with other techniques. 
Conclusion: With the time effectiveness, ability to scale well with numerous requirements, automation and clear implementation guidelines of SRPTackle, project 
managers can perform RP for large-scale requirements in a proper manner, without necessitating an extensive amount of effort (e.g. tedious manual processes, need 
for the involvement of experts and time workload).   

1. Introduction 

To ensure the fulfilment of the stakeholders’ requirements, various 
decisions have to be made through software development [1,2]. 
Securing stakeholders’ core requirements is a primary driver to achieve 
good quality in a system [3,4]. Many system projects have several re-
quirements, and implementing all of them with limited resources (e.g. 
insufficient budget, time and technical staff) is difficult [5,6]. Thus, 
requirement prioritisation (RP) is often executed to assist requirement 
engineers in determining the order in which to implement requirements 
as perceived by the stakeholders of a system. In RP, the most important 
or highest risk requirement is selected to produce a quality system [5,7]. 
RP is a crucial process in software development for decision-making 
because information on priorities is critical for project managers to 
resolve conflicts, plan for staged deliveries and make necessary 
trade-offs [5,8]. Thus, the influence of RP cannot be overstated [5,9]. 

RP is a complex decision-making process [5,10]. To execute such 
process, various techniques, such as StakeRare [11] and Drank [12], 
have been proposed. Although useful, existing RP techniques suffer from 
key challenges, such as lack of scalability (i.e. ability to manage 
numerous requirements); lack of time efficiency, especially in priori-
tising a large set of requirements; lack of stakeholder quantification and 
prioritisation (SQP) processes for evaluating the effects of participating 
stakeholders in prioritising requirements; heavy reliance on the 
involvement of experts in conducting the prioritisation process; and lack 
of automation [3, 5, 13, 14]. 

The scalability issue has a critical effect on the prioritisation process 
in industrial projects because majority of current industrial projects 
have numerous requirements [5,13]. A scalable RP technique should be 
able to work with a large set of requirements when performing RP within 
a reasonable time whilst producing accurate results [3, 5, 13]. In RP, sets 
of requirements are categorised into three different categories, i.e. small 
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(number of requirements < 15), medium (15 <= number of re-
quirements < 50) and large (number of requirements >= 50) sets, as 
defined in [15]. Despite the fact that software products have become 
more complex (e.g. containing a large set of requirements), most exist-
ing RP techniques can only work well with a few requirements; such 
techniques include the analytic hierarchy process (AHP) technique [10, 
13]. Fig. 1 presents the percentage of the acceptable handling of the 
scalability issue within RP techniques, as highlighted in a study on 
existing 107 RP techniques in [5,13]. 

As shown in Fig. 1, the percentage of the poor handling of scalability 
issues on the basis of the 107 RP techniques is 93%, with only 7% suc-
cessful ones. amongst the successful ones, existing techniques, such as 
PHandler [15] and StakeRare [11], still face issues regarding manual 
processing and heavy reliance on the participation of experts in the 
prioritisation process (i.e. in assigning the priority value for each 
requirement, classifying the requirements, and evaluating the influence 
of participating stakeholders in the prioritisation). The latter raises the 
issue of potential bias being introduced by experts because such bias can 
influence the accuracy of a technique [5,16]. Furthermore, for most 
current techniques, certain factors, such as the number of comparisons, 
time, lack of automation and heavy reliance on expert participation, 
play key roles with regard to the scalability problem [5, 13, 17]. In most 
cases, the stakeholders of the system must rate the importance degree 
and make comparisons between each requirement. This process be-
comes even more complex as the number of requirements increases [3, 
5]. Additionally, a manual process that heavily relies heavily on experts 
to conduct the procedure and measurements and assess the relative 
priority value of each requirement can also be counterproductive and 
time consuming. Therefore, having to handle a large set of requirements 
makes these RP techniques unmanageable [13,17]. Excessive reliance 
on professional expertise is not preferred due to threats to the validity of 
the technique if an expertise shortage occurs [6, 15, 18]. In such con-
ditions, interpreting and understanding the requirements for the tech-
nique’s initiation and implementation can become difficult. Moreover, 
such approach increases the likelihood of implementing the technique in 
an improper and/or nonprofessional manner, thus directly affecting the 
quality of results [5, 6, 15]. The potential biases induced by experts arise 
in evaluating the respective impact degree of the participating stake-
holders in RP and specifying the priority values of the requirements or 
classifying the requirements. These biased assessments can also influ-
ence the quality of the prioritised results with respect to specifying ac-
curate requirement priority values (RPVs) and the quality of the most 
important requirements to be developed to secure a successful software 
system project [5, 6, 15]. 

In consideration of numerous requirements, a lack of automation 
during the RP process influences the efficiency of the technique because 
RP becomes complicated due to the effort required [5, 13, 17]. Manual 
RP affects time efficiency [5, 13, 19]. An increase in the number of re-
quirements considerably affects time efficiency because of the 

complexity of implementing prioritisation. Such complexity is related to 
the high number of comparisons and the manual processes required to 
execute the computational calculations for specifying RPVs and pro-
ducing a prioritised list of requirements [5, 12, 13, 15]. Furthermore, the 
selection of stakeholders who are involved in the prioritisation process 
of the requirements is crucial to securing accurate RP results [5, 6, 11, 
15]. A stakeholder’s influence on system requirements and development 
success varies from one stakeholder to another; moreover, the number of 
participating stakeholders of diverse types can be enormous, with each 
stakeholder interpreting their requirements differently [6, 11, 20]. 
Hence, an SQP process is conducted, with an aim to identify a stake-
holder priority value (SPV) for each stakeholder and prioritise the 
stakeholders [6, 18, 20]. This process assists in identifying stakeholders 
who have a greater influence on project success, leading to the selection 
of the most essential requirements for important stakeholders and thus a 
successful system [5, 6, 15]. However, most of the existing RP tech-
niques do not execute an SQP process. A few techniques perform the SQP 
process manually and rely heavily on substantial professional human 
intervention to specify the SPV of each participating stakeholder. This 
approach provides high abstract details without providing standard 
measurement criteria for quantifying and prioritising the stakeholders 
on the basis of the SQP attributes; however, it is not time efficient [5, 21, 
22]. 

To cope with these key challenges, this study aims to propose a new 
semiautomated technique named ‘SRPTackle’. SRPTackle presents a 
new process for prioritising requirements on the basis of a combination 
of the following: a constructed RPV formulation using a multi-criteria 
decision-making method (i.e. weighted sum model [WSM]), a classi-
fying algorithm (i.e. K-means and K-means++) and a binary search tree 
(BST). The contributions of this work can be summarised as follows:  

• A new RP technique called ‘SRPTackle’ is proposed. This technique 
presents low-level details for the automatic implementation of pri-
oritisation for scalable requirements in software system projects, 
without requiring a considerable amount of effort (e.g. need for ex-
perts’ participation and/or a tedious manual process in addition to 
potential human faults in the manual process and time workload). 
SRPTackle supports the RP process in system projects that contain 
various types of stakeholders with competing interests and limited 
resources (i.e. where each stakeholder defines their needs differ-
ently). SRPTackle also evaluates the influences of participating 
stakeholders by identifying their SPV values automatically with 
minimal expert involvement. The SPV values are considered in 
specifying the priority value of each requirement. To produce a 
prioritised list of requirements, SRPTackle employs a clustering al-
gorithm (K-means and K-means++) and BST, along with a con-
structed RPV formulation function, on the basis of the WSM method.  

• The development of the automation implementation tool 
(SRPTackle-Tool) along with presenting clear implementation 

Fig. 1. Percentage of the existence of the scalability issue in RP techniques.  
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guidelines for automating the SRPTackle process and supporting 
straightforward implementation of the proposed technique in in-
dustrial and academic sectors. 

• The empirical evaluation of SRPTackle is based on a large real soft-
ware project to affirm its capability to address the key issues in 
existing RP techniques. 

The remainder of this paper is structured as follows: Section 2 de-
scribes related work on RP. Section 3 presents a detailed description of 
SRPTackle, with respect to the proposed process. Section 4 illustrates an 
automation implementation tool developed for SRPTackle. Section 5 
discusses an assessment of the proposed SRPTackle technique. Section 6 
enumerates the experimental results. Section 7 presents a detailed dis-
cussion about the trends observed during the experimental analysis and 
comparison, along with essential clarifications associated to the base of 
the proposed SRPTackle technique. Section 8 elaborates on threats to 
validity. Section 9 explores the managerial contributions of SRPTackle. 
Lastly, Section 10 concludes the study and provides recommendations 
for future work. 

2. Related work 

The execution of RP in software development has led to an efficient 
negotiation of precise requirements [1,23]. These precise requirement 
negotiations assist software engineers in eliminating unnecessary or 
contradictory requirements [5,13]. Additionally, an RP process can 
assist in securing an effective implementation schedule, allowing project 
managers to modify project resources and delivery dates on the basis of 
environmental circumstances [5,15]. Project managers also improve 
stakeholders’ satisfaction by conducting the RP process and increasing 
the likelihood that their preferred requirements are implemented. 
Hence, RP makes the rejection of projects after development less likely 
through the creation of clear and precise requirements [13]. 

To date, various techniques have been introduced to perform a pri-
oritisation process for the requirements of a system. The most straight-
forward and common RP technique is perhaps the one that is based on 
numerical ranking [5, 13, 14]. This technique performs the prioritisa-
tion process manually by classifying the requirements into three priority 
groups: high, middle and low groups [5, 13, 15]. The classification is 
performed according to stakeholders’ preferences and expert judgement 
[5,13]. Likewise, a priority group technique executes the RP process by 
initially categorising the requirements into three groups [5,13]. Unlike 
the numerical assignment technique, the priority group technique 
groups requirements into new groups repeatedly, until only one 
requirement remains in each categorised group [5,13]. The ranking 
technique is another RP technique that prioritises requirements in a 
manner similar to the numerical assignment technique. The difference is 
in using a linear approach, where a value of 1 will be assigned to the 
most important requirement, a value of 2 to the second most important 
requirement, and so on, until the least important requirement is assigned 
with the value of n, which indicates the complete number of re-
quirements in the set [15]. Owing to the difficulty in aligning the views 
of several stakeholders, the ranking technique can only be convenient 
when performing the RP process with a single participating stakeholder 
[5, 13, 14]. In the top-ten technique, the prioritisation is performed by a 
number of various stakeholders, who are responsible for selecting their 
own top ten requirements [5,13]. These techniques (numerical assign-
ment, top-ten and priority group and ranking) are suitable for a small 
dataset of requirements and have inabilities and/or disadvantages in 
dealing with large-scale requirements, specifying the relative priority 
value of each requirement and catering the SQP process to evaluate 
participating stakeholders [5,13]. 

As an improvement of the numerical ranking approach, several 
works in the literature adopt the AHP technique. Specifically, the AHP 
technique performs the prioritisation process by manually executing 
pairwise comparisons on the basis of experts’ judgements, without 

considering the SQP process for participating stakeholders [5,13]. 
Although the AHP technique is considered one of the best techniques in 
terms of reliability, the AHP is not suitable for a large number of re-
quirements, as of the number of pairwise comparisons will increase as 
the number of requirements increases [5,13]. Moreover, the AHP has 
issues on time consumption and complexity when used with a large scale 
of requirements [5,13]. As such, a hierarchy AHP (HAHP) technique has 
been presented, with the main purpose of addressing the scalability is-
sues in AHP techniques [14, 15, 24]. HAHP succeeded in reducing the 
number of comparisons by only comparing requirements on the same 
hierarchy level [5,13]. However, the HAHP technique is less reliable and 
fault tolerant compared with AHP, and is more difficult to apply [5,13]. 
In a similar work, the ReDCCahp introduces a new method of dynamic 
consistency checking to eliminate the redundant AHP comparisons, ul-
timately minimising the number of pairwise comparisons [10]. 
Combining AHP with neural network, the PHandler approach auto-
mated the assignment of priority value for each requirement [8,15]. 

Apart from adopting neural networks, some works focus on machine 
learning approaches. In CBRanking, machine learning approach is 
applied to predict preference values of selected pairs and to generate 
approximate ranks for requirements [25]. In other related works, the 
interactive genetic algorithm (GA) technique optimises the list of pri-
oritised requirements by minimising the number of comparisons [26]. 
Extending the existing work on StakeRare [11] and Saffron [27] (i.e. 
techniques based on the application of social networks and collaborative 
filtering), Lim et al. applied the GA to rank the impact of each partici-
pating stakeholder in assigning the priority value for each requirement 
[28]. Similarly, the WCW approach adopts a hybrid grey wolf and whale 
optimisation algorithm to rank requirements [29]. 

Based on the aforementioned works, a number of general observa-
tions can be deduced. Firstly, most, if not all, of the related techniques 
treat all participating stakeholders at par, and the same impact degree is 
assigned to all entities. Thus, their credibility falls short as different 
stakeholders may have different contribution and focus within the RP 
process [5]. Secondly, despite the usefulness of these techniques, one 
major challenge in these techniques is that they require deep expertise 
and knowledge to initiate, interpret and execute their prioritisation 
processes. This challenge incorporates human nature biases induced by 
experts, or threats related to the technique’s validity in the absence of 
human experts [5,15]. Finally, the majority of these approaches lack an 
automated prioritisation process and are not cost-effective with respect 
to time utilisation [5]. 

Supporting the aforementioned observations, various review studies 
have been conducted to critically analyse the strengths and challenges of 
existing RP techniques. Some common and recent studies include those 
of Sufian et al. [14], Achimugu et al. [13], and Hujainah et al. [5], who 
presented critical and comprehensive analyses of 40, 49, and 108 RP 
techniques, respectively . The findings of these studies, along with those 
of other studies [9, 21, 30, 31], demonstrated that the existing tech-
niques face major limitations as regards to scalability, cost effectiveness 
in terms of time consumption, heavy reliance on experts to initiate and 
execute the prioritisation process, the lack of an SQP process for eval-
uating the impacts of stakeholders on system requirements and a lack of 
automation. Therefore, to address these limitations, this paper proposes 
a new semi-automated technique for scalable requirements (SRPTackle), 
and constructs a new automation implementation tool (SRPTackle-Tool) 
for providing clear implementation guidelines to automate the 
SRPTackle process and support straightforward execution of the tech-
nique in industrial and academic sectors. The following section provides 
a detailed explanation of SRPTackle. 

3. Proposed SRPTackle technique 

Supporting fully automated prioritisation can mitigate repetitive 
manual operations but should not impede human experts’ judgement 
and stakeholders’ involvement during the prioritisation process. 
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However, in RP, stakeholders’ participation and expert roles cannot be 
totally eliminated due to the participation of software product where 
human expertise is important, and the prioritisation process has to be 
conducted on the basis of stakeholder preferences [5, 12, 13]. Thus, and 
based on [5, 12, 13], recommendation and attempts on automating parts 
of the RP process and the essential elements of conducting RP reported 
in [5,32], the prioritisation process of the SRPTackle is constructed as a 
semi-automated process to address the RP key limitations. 

The process of the SRPTackle technique is illustrated in Fig. 2. It 
consists of two main phases: pre- and post-prioritisation phases. The aim 
of conducting the process of the SRPTackle is related to establish the 
semi-automated process of SRPTackle in prioritising the requirements. 
The pre-prioritisation phase is constructed initially in the SRPTackle 
technique to collect stakeholders’ preferences, in which participating 
stakeholders assign an initial weighting value to each requirement, 
which should be obtained to perform the prioritisation process. Thus, 
this phase is considered the basis for performing the full process of the 
pre-prioritisation phase in an automated manner. This step can assist to 
automate the process and minimise the need for expert participation in 
terms of assessing stakeholders’ impacts and formulating the priority 
value of each requirement, and classifying and generating the prioritised 
list of requirements. The following subsections provide the detailed 
description of each phase of the SRPTackle technique. 

3.1. Pre-prioritisation phase 

The aim of this phase is to obtain initial weighting values for the 
requirements from stakeholders, which will be used as inputs in the post- 
prioritisation phase. In the SRPTackle technique, participating stake-
holders assign an initial weighting value to each requirement on the 
basis of two prioritisation criteria: importance and cost. These defined 
criteria are the most significant prioritisation criteria in prioritising re-
quirements [5,33]. 

The usage of these two criteria (importance and cost) can assist in 
guaranteeing the production of a balanced list of prioritised 

requirements based on the perspectives of all stakeholder types. In this 
example, the stakeholder types are categorised as functional benefi-
ciaries, technical stakeholders and commercial stakeholders [5, 33, 34]. 
The importance criteria are used to prioritise requirements according to 
their importance to the needs of functional beneficiary stakeholders 
(users and customers) to estimate their expected satisfaction. In 
contrast, prioritising requirements on the basis of cost criteria is per-
formed by technical (i.e. development teams) and commercial (i.e. 
business analysts and marketing managers) stakeholders to specify the 
priority order of the requirements according to the required cost for each 
requirement to be implemented [5,34]. Most current industrial com-
panies aim to prioritise requirements on the basis of the importance 
criteria to obtain stakeholders’ expectations and to use the cost criteria 
to prioritise requirements according to the required cost for imple-
menting each requirement [5,34]. In SRPTackle, functional beneficiary 
stakeholders should assign the weight value for each requirement on the 
basis of the importance criteria. This weight value is denoted as the 
requirement importance weight value (RIWV) and refers to the impor-
tance of the requirement to the functional beneficiary stakeholders (e.g. 
whether it is to be implemented and delivered first). In contrast, tech-
nical and commercial stakeholders assign a weight value to each 
requirement according to the cost of implementation. This assigned 
weight value is denoted as the requirement cost weight value (RCWV). 
The weight values are employed on a scale of 1 (lowest weighting value) 
to 5 (highest weighting value). The RIWV and RCWV serve as inputs for 
conducting the, post-prioritisation phase. 

3.2. Post-prioritisation phase 

In this phase, the prioritisation process is executed, based on the 
initial weight values of the requirements. The full implementation of this 
phase is conducted in four steps: specifying the SPV for each stake-
holder, formulating the RPV, classifying and generating the prioritised 
list of requirements by employing the K-means and K-means++ algo-
rithms, and applying the BST algorithm. The following subsections 

Fig. 2. Process of the proposed SRPTackle technique.  
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explain the details of each step. 

3.2.1. Formulation of the requirement priority value 
In this step, the RPV for each requirement is formulated by applying 

the WSM method, which is considered one of the most commonly 
applied and useful methods in performing the process of multi-criteria 
decision-making [35–38]. The WSM method has silent properties of 
simplicity and time efficiency, i.e. the priority of variants can be eval-
uated and revealed over listed criteria in a shorter time with an easily 
applicable computational process relative to other multi-criteria deci-
sion-making methods, such as AHP [35–38]. 

Additionally, unlike existing RP techniques, SRPTackle evaluates the 
influences of participating stakeholders in the RP process, which are 
quantified and prioritised by identifying the impact degree (SPV value) 
of each stakeholder in the RP. The SPV denotes the impact degree 
(priority) value of each participating stakeholder (SPV) in the RP pro-
cess. The SPV values are considered in specifying the priority value of 
each requirement. SRPTackle uses StakeQP to conduct the SQP process 
to evaluate the influences of participating stakeholders by identifying 
the SPV of each participating stakeholder in the prioritisation of re-
quirements. The StakeQP is a newer SQP technique with an automation 
implementation tool (StakeQP-AIT) that evaluates stakeholders’ im-
pacts on the basis of attributes (called StakeQP attributes): role influ-
ence, positional power, interest and experience with respect to the 
knowledge and education background attributes, as documented in [6]. 
StakeQP provides a semi-automated process for quantifying and pri-
oritising stakeholders on the basis of the new attribute measurement 
criteria for each attribute (AMC). StakeQP also employs a multi-attribute 
decision-making method, namely, the ‘technique of order preference 
similarity to the ideal solution’ to specify the SPV of each stakeholder. 
The AMC refers to the measurement used to assess stakeholders’ influ-
ence(s) on each attribute [6]. A higher SPV indicates a more significant 
stakeholder. The calculation of RPV is executed on the basis of the WSM 
method and considers the SPV of each participating stakeholder, as 
shown in Eq. (1), in which three inputs are used to identify the RPV: 
RIWV, RCWV and SPV. 

RPVi =
(∑

RIWVi,s ∗ SPVs

)
+

(∑
RCWVi,s ∗ SPVs

)
(1) 

Here, 
RIWV refers to the weight value of the ith requirement that is given 

from the sth stakeholder, based on the importance criteria; 
RCWV refers to the weight value of the ith requirement that is given 

from the sth stakeholder, based on the cost criteria; and 
SPV refers to priority value associated with the sth stakeholder. 
The RIWV and RCWV are obtained from the pre-prioritisation phase 

(as described in Section 3.2). The SPV of each participating stakeholder 
is obtained by executing the StakeQP technique in [6]. The output of this 
step is the RPV for each requirement, which will be used as an input for 
the next step in classifying the requirements. 

3.2.2. Classifying the requirements 
Clustering refers to unsupervised learning classification, with the 

aim of classifying unlabelled data points into several classifications with 
respect to information found in the data that describes the points and 
their relations, such as a suitable similarity measure [39–42]. One 
commonly used clustering algorithm is K-means [39,43]. The K-means 
algorithm aims to cluster data points into a number of clusters, where 
each cluster has its own centroids, and in which each point is grouped to 
the cluster with the nearest centroid [40,44]. K-means has salient ad-
vantages in simplicity (simple and easy to implement for handling 
practical problems) [39, 45, 46], speed (computationally fast) [39, 45, 
46], and efficiency in working with large datasets that contain numeric 
values [39, 43, 46], as compared to other clustering methods, such as 
K-medoids, partitioning around medoids, ’clustering large applications’, 
and fuzzy clustering. Therefore, K-means is used in this study to cluster 

the requirements based on their obtained RPVs, in which the numeric 
values represent the priority value of each requirement. 

The cluster centroids are considered as crucial elements in the K- 
means algorithm. The performance of the K-means algorithm with 
respect to the speed (time utilisation with number of iterations) and 
accuracy to find the optimal clustering can be affected by the random 
initialisation of the clusters’ centroids. In that regard, improper centroid 
initialisation can lead to drawbacks in terms of slower convergence 
(requiring a high number of iterations to converge), empty clusters, and 
a higher probability of getting stuck in bad local minima, which can lead 
to a low-accuracy result in clustering the data [39,43]. Hence, the 
K-means algorithm is considered to be sensitive to the selection of initial 
centroids; however, this can be managed by adopting a proper initiali-
sation method for initialising the cluster centroids instead of random 
selection [39,43]. The K-means++ algorithm is presented in [43] as an 
initialisation method for centroid selection in the K-means algorithm. 
The K-means++ algorithm adds value by improving the accuracy and 
the speed of the K-means algorithm, as proven in [43]. The initialisation 
method of K-means++ has been proven to address the sensitivity to 
initial centroid selection. In particular, the performance using the 
K-means++ initialisation method substantially outperforms K-means 
with random centroid initialisation in terms of producing more accurate 
clustering solutions and requiring less time consumption for conducting 
the clustering process, as fewer iterations are required to help achieve 
local search convergence [43]. Moreover, the process of K-means++ is 
fast and easy to implement in real practice [39,43]. As a result, 
K-means++ is selected in SRPTackle as the initialisation method for the 
centroid selection of the K-means algorithm. 

In SRPTackle, the number of clusters (k) is specified to be three, 
based on the numerical assignment technique, which recommends to 
group the requirements into three levels (high, medium, and low) [5, 
13]. However, in the proposed SRPTackle, the requirements are classi-
fied based on their obtained RPV values, rather than by asking a 
stakeholder to classify them as in the NA technique. With a large number 
of clusters (e.g. 100 clusters), the speed performance of the K-means++

can be reduced because of the high number of iterations required, which 
can lead to some time utilisation constraints in the application of 
massive data practices [39,43]. This may relate to the sequential nature 
of the K-means++ algorithm, i.e. making an iteration over the data to 
initiate each centroid. In this regard, 99 iterations are required to find 
the centroids for the 100th cluster, as the number of iterations is equal to 
(K-1) in K-means++ [39,43]. However, with the specified number of 
clusters in SRPTackle (three clusters), the K-means ++ algorithm can 
perform the initialisation for three cluster centroids without consuming 
excessive time, as the K-means++ algorithm will need only two itera-
tions to initialise the three cluster centroids (the first centroid is assigned 
uniformly at random from the data points, and then two iterations to 
initialise the other two centroids(k-1)) [39,43]. The classification of 
each requirement to each group (cluster) is performed based on the 
process of K-means++ and K-means algorithms. Fig. 3 presents the 
pseudo code of the process for clustering the requirements into three 
clusters based on one element, i.e. the RPV value of each requirement. 

The implementation steps of the clustering process start with the 
initialisation of centroids (c1, c2, c3) for the three clusters [43]. The 
initialisation mechanism of the K-means++ algorithm is presented in 
lines 1 to 5 of Fig. 3. The first centroid (c1) is initialised randomly to any 
requirement RPV value (yr) from Y, as shown in line 1. The steps in lines 
2 to 5 are recursively executed to initialise the next centroids, until all 
centroids of the defined clusters have been chosen. In line 3, the distance 
yr to the nearest defined centroid ci is computed using the Euclidean 
distance as shown in Eq. (2). This is the most common definition, owing 
to its computational simplicity, i.e. its straightforward manner in 
computing the distance at each iteration [43,44]. The probability for 
each yr to be the next is calculated based on Eq. (3), as in line 4. The yr 
that has the highest probability (farthest distance) from the defined 
centroids is selected to be the next centroid. The core idea in K-means++
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is to select centroids one-by-one in a controlled fashion, where the set of 
initialised centroids bias the choice of the next centroid stochastically, as 
K-means++ tries to select from the far-away specified clusters’ 
centroids. 

E(yr) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ci − yr)
2

√

(2) 

In the above, 
ci is the centroid of the ith cluster; 
yr is the RPV of the rth requirement in the set Y; and 
E(yr) is the distance yr to the nearest cluster centroid ci. 

P(yr) =
E(yr)

2

∑
y∈ Y E(y)2 (3) 

Here, 
yr is the RPV of the rth requirement in the set Y; 
E(yr) is the distance from yr to the nearest cluster centroid ci; and 
P(yr) is the probability of selecting yr to be the next centroid. 
After obtaining the three initial clusters’ centroids, the K-means al-

gorithm executes the process of clustering, as shown in lines 6–10 of 
Fig. 3. In line 7, the distance from y to each defined centroid ci is 
computed using the Euclidean distance in Eq. (4). Based on the distance 
calculation, each yr is grouped to the cluster with nearest centroid, as 
shown in line 8. In line 9, each defined cluster centroid ci is recalculated 
by taking the average of all of its assigned yr values using Eq. (5). The 
steps in lines 7 to 9 are repeatedly executed until there will no further 
changes in the cluster centroid assignments. Then, the final clustering is 
presented by clustering the requirements into three clusters with respect 
to their RP values. With the use of the K-means++ initialisation mech-
anism for the centroids, K-means is able to produce an accurate 
requirement clustering result with fewer iterations, as the K-means++

mechanism has been proven to enhance the performance of K-means in 
terms of accuracy and speed [43]. 

Eir =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ci − yr)
2

√

(4) 

In the above, 
ci is the centroid of the ith cluster; 
Eir is the distance yr to the ith cluster centroid; 

yr is the RPV of the rth requirement that belongs to the ith cluster 
centroid ci; and 

mi is the number of all assigned yr values in the ith cluster centroid ci. 

ci =
1
mi

∑

yr∈ci

yr (5) 

Here, 
ci is the centroid of the ith cluster; 
yr is the RPV of the rth requirement that belongs to ith cluster 

centroid ci; and 
mi is the number of all of the assigned yr values in the ith cluster 

centroid ci. 

3.2.3. Applying the binary search tree 
Several methods are used to sort the requirements, such as binary 

priority List, BST, bubble sort, spanning tree matrix and AHP. The BST 
has better effectiveness in dealing with a large number of data that need 
to be sorted in a ranked list with fewer comparisons. This advantage 
leads to less time consumption compared with alternative methods such 
as the bubble sort, binary priority list, spanning tree matrix and AHP, as 
proven in mathematical complexity analysis and empirical experimental 
comparison documented in [13, 17, 24, 47]. The complexity of the total 
number of BST comparisons is O(log n) in the best case, where the BST is 
balanced, and O(n Log n) in the unbalanced BST, where n is the number 
of requirements [13, 17, 24, 47]. Meanwhile, the total number of 
comparisons using AHP or bubble sort is equivalent to (n * (n-1)/2), 
which is technically difficult to implement and consumes considerable 
time [13, 17, 24, 47]. However, a drawback of using the BST in RP is a 
simplified ranking of requirements (without revealing to what extent 
each requirement is more essential than another), as no priority value is 
assigned to each requirement [5,13]. In SRPTackle, the priority value of 
each requirement ‘RPV’ is obtained from the previous steps of the 
technique. Thus, the BST is selected to rank the requirements in each 
cluster. Fig. 4 illustrates the pseudocode of the BST algorithm, which 
presents the application steps of the BST for producing a ranked list of 
requirements on the basis of their RPV. 

The BST is executed first on the requirements in the high cluster 
category to produce a ranked list of requirements to be implemented in 

Fig. 3. Clustering pseudo code using K-means++ and K-means.  
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the high cluster, as the priority of the requirements in the high cluster 
are greater than those in the other two clusters (middle and low clus-
ters). This is followed by the middle cluster, which contains re-
quirements with higher priorities than those in the low cluster. The low 
cluster is sorted last. The process starts with step in line 1 of Fig. 4, by 
randomly selecting one requirement’s RPV as the root node. Then, the 
steps from lines 4 to 25 are executed recursively, to add each re-
quirement’s RPV. Each requirement’s RPV is selected and compared to 
the root node. If the requirement’s RPV is less important than the root 
node, it is compared to the left subtree node value. If the requirement’s 
RPV is less than the root node value, it is compared to the right subtree 
value; otherwise, it is compared to the left subtree. If the node has no 
subtree, the requirement’s RPV is inserted as the new leaf node. 
Otherwise, the requirement’s RPV is added to the right or left of the 
subtree; if it is less, then it is added to the left, and if not, it is added to 
the right. This process is repeated until all requirements’ RPVs have 
been compared and inserted in the BST. The steps in lines 26 to 30 show 
the process for sorting the requirements in a ranked list with a 
descending mode, where the sorting process is executed by traversing 
through the entire BST and recursively printing the right subtree, 

followed by visiting the root and then recursively printing the left 
subtree. 

4. SRPTackle-tool 

The SRPTackle-Tool automation implementation tool is developed to 
automate the prioritisation in the SRPTackle technique. The SRPTackle- 
Tool is constructed in the C# programming language with a .NET 
environment, HTML language for the graphical user interface (GUI), and 
a Microsoft SQL Server as the database engine. Fig. 5 shows the process 
of implementing the prioritisation in the SRPTackle technique using the 
SRPTackle-Tool. The SRPTackle-Tool is comprised of two main com-
ponents: the GUI, and the automation engine. These two components 
contain two phases: an input phase, and a process and output phase. The 
details of these phases are presented as follows.  

1 Phase 1, input phase: In this step, the files (in Excel format) of the list 
of the requirements, initial requirements’ weighting values, and SPV 
of participating stakeholders are uploaded into the GUI of the 
SRPTackle-Tool, to be stored in the constructed database. The 

Fig. 4. Binary search tree pseudo code.  
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requirements list file contains the ID and title for all requirements 
that need to be prioritised. The file for the requirement weighting 
values contains the weighting values of each requirement (RIWV and 
RCWV), and should be provided by the stakeholders who are 
involved in prioritisation process of those requirements. The SPV file 
includes the SPV of participating stakeholders is calculated by 
executing the process of StakeQP-AIT as described in the StakeQP 
study [6].  

2 Phase 2, process and output phase/Execution of the post- 
prioritisation phase of the SRPTackle technique: After uploading 
and storing the above-mentioned files, the SRPTackle-Tool directly 
implements the steps of the post-prioritisation phase, and displays 
the results via the following automated steps:  
2.1 Automated calculation of the RPV for each requirement: The 

SPV of participating stakeholders in RP process, RIWV, and 
RCWV are extracted from the constructed database to auto-
matically calculate the RPV of each requirement. The details of 
the RPV calculation were illustrated in Section 3.2.1).  

2.2 Automated classification of the requirements: Based on the 
specified RPV, the requirements are automatically classified into 
three clusters (high, medium, low) by employing of the K- 
means++ and K-means algorithms, as described distinctly in 
Section 3.2.2.  

2.3 Automated execution of BST: To sort and rank the order of the 
requirements in each cluster and produce the prioritised list of 
requirements, the BSTs are executed automatically. This step 
was described in Section 3.2.3. 

2.4 Presentation of the result: The prioritised list of the re-
quirements, along with their specified RPVs, are exposed on the 
GUI of the SRPTackle-Tool. 

5. Experimental studies 

In this section, we elaborate the precise definition and design of the 
experiments on the basis of the standard guidelines proposed by Wohlin 
et al. [48] on how to report and document experimentations in software 
engineering. Table 1 shows an overview of the design of the experi-
ments, in which the key elements of the experiments are summarised. 
The following subsections will articulate in detail the reported key 
elements. 

5.1. Experiment definition 

The experiments were motivated by the goal of evaluating the 
effectiveness of SRPTackle compared with that of StakeRare [11], Lim 
et al. GA [28], Saffron [27] and OSA [49]. The effectiveness of a pri-
oritisation technique represents its capability to produce rapid and ac-
curate prioritisation results. Hence, the evaluation is conducted to 
measure the accuracy of results and time consumption. Correspond-
ingly, the research questions of our experimentation are as follows: 

Fig. 5. Implementation structure of the SRPTackle-tool.  

Table 1 
Overview of the design of the experimentation.  

Goal Analysing the techniques for software requirement 
prioritisation: SRPTackle, StakeRare [11], Lim et al. GA [28], 
Saffron [27] and optimal solution analysis (OSA) [49], with 
the goal of measuring the accuracy of results and time 
consumption. 

Independent 
variables 

SRPTackle and existing RP techniques used: StakeRare, Lim 
et al. GA, Saffron and OSA. 

context ralic benchmark dataset: 122 requirements of ralic industrial 
software project, including 49 general requirements and 73 
specific requirements. 

dependant 
variables 

accuracy and time consumption  
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• Research question 1 (RQ1): Are the prioritisation results produced by 
SRPTackle more accurate (compared with the ground truth) than the 
prioritisation results produced by StakeRare, Lim et al. GA and 
Saffron techniques?  

• Research question 2 (RQ2): Is SRPTackle less time-consuming than 
Lim et al. GA and OSA? 

5.2. Hypothesis formulation 

Corresponding to the formulated research questions, the following 
null hypotheses are proposed:  

• H10Accuracy: The accuracy of the SRPTackle and a particular technique 
(StakeRare, Lim et al. GA and Saffron) are the same.  

• H20Time: SRPTackle’s time requirement to produce the prioritisation 
list is the same as that required by a particular technique (Lim et al. 
GA and OSA). 

If the null hypothesis can be rejected with comparatively high 
conviction, then an alternative hypothesis can be formulated as follows:  

• H11Accuracy: The accuracy of the SRPTackle and a particular technique 
(Lim et al. GA and OSA) are not the same.  

• H21Time: SRPTackle’s time requirement to produce the prioritisation 
list is not the same as that required by a particular technique (Lim 
et al. GA and OSA). 

5.3. Variables and measures 

The independent variables of our experiments are SRPTackle, 
whereas the alternative techniques include StakeRare [11], Lim et al. GA 
[28], Saffron [27] and OSA [49]. These specific techniques are consid-
ered relevant to SRPTackle, as they were validated in terms of suitability 
to the RALIC dataset, which will be used as a benchmark dataset in our 
experiments. These specific techniques were evaluated using medium- 
and large-size requirements as in the RALIC dataset and the same ac-
curacy measurement method (to find the accuracy result) to assess the 
performance as the present study in the accuracy evaluation process. To 
the best of our knowledge, the specific techniques for comparison are the 
most common techniques that secured the best results published using 
the RALIC benchmark dataset. 

In our experiment, two dependant variables were considered: time 
consumption and accuracy. These variables are commonly used in 
evaluating the effectiveness of the RP technique in terms of the capa-
bility to work with large-scale data by producing a fast and accurate 
prioritised list of requirements. The most frequently measured depen-
dant variables in RP are accuracy of results and time needed to perform 
the prioritisation task. This can be related to the fact that a prioritisation 
process applicable in commercial software development should be fast 
and capable of providing accurate results [85]. 

Time consumption refers to the time consumed by the technique in 
prioritising the requirements to produce a ranked list of requirements. 
As can be observed from the constructed hypotheses and research 
questions, the time consumption performance of SRPTackle is compared 
with two alternative techniques (i.e. Lim et al.’s GA [28] and OSA [49]) 
that perform RP with less time consumption (e.g. AHP). Compared with 
StakeRare and Saffron (which were not included), Lim et al.’s GA and 
OSA have the same features as SRPTackle in terms of performing RP 
with a supported automation tool. 

As for the accuracy of the dependant variable, SRPTackle was 
measured to verify its ability to produce an accurate prioritised list of 
requirements in relation to other selected techniques. The stakeholders’ 
agreement (satisfaction or perception) method and comparison with 
actual results can be used to measure the technique’s accuracy in the RP 
domain. The former is related to the assessment of accuracy perfor-
mance by evaluating the produced result from the stakeholders’ point of 

view, where the percentage of stakeholders’ agreements (or disagree-
ments) on the produced result are revealed. The latter is conducted by 
comparing the produced result of the technique with the actual result of 
the used projects’ dataset. In this research, the second method was 
selected to assess the accuracy performance of SRPTackle. The used 
RALIC dataset has the actual result of the RALIC project; this result is 
known as the ground truth of the prioritised requirements and the 
stakeholders and is built on the basis of a rigorous and systematic pro-
cess based on the stakeholders’ satisfaction or agreements. In addition, 
the selected method facilitated a fair comparison with other existing 
techniques that used the RALIC dataset in evaluating their performance 
against the actual data (ground truth) of RALIC. 

Prioritisation accuracy was measured by comparing the ranked pri-
oritised list of requirements produced by a specific technique 
(SRPTackle, StakeRare, Lim et al.’s GA and Saffron) with the ground 
truth list of the requirements. The accuracy of requirement prioritisation 
is the degree of similarity between the prioritised list of requirements 
(ranked list of the general and specific requirements) produced by a 
specific technique and the prioritisation in the ground truth list. The 
ground truth list presents the actual prioritised list of the RALIC re-
quirements (ranked list of the general and specific requirements), as 
derived from the RALIC project documentation in [50]. The statistical 
measure of the Pearson correlation coefficient was selected to determine 
the degree of similarity because it is considered the best method for 
measuring the association between two or more variables [51]. In 
addition, it has been used by existing RP techniques for the same pur-
pose, i.e. finding the accuracy of their prioritised result [11,27]. The 
value of the correlation coefficient (p) ranged between +1 and − 1, 
where +1 refers to a perfect positive correlation, − 1 indicates a perfect 
negative correlation, and 0 refers to no correlation. As shown in Eq. (6), 
the Pearson correlation coefficient formula was used to calculate the 
correlation coefficient value (p). 

P =

∑n
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1 (xi − x)2 ∑n
i=1 (yi − y)2

√ (6) 

In the above equation, 
P is the Pearson correlation coefficient value (accuracy perfor-

mance); 
n is the number of samples of requirements in each list (both lists 

consist of the same number of requirements); 
xi is the rank for requirement i in the list of SRPTackle; and 
yi is the rank for requirement i in the ground truth list. 

5.4. Objects 

The experiments were conducted using a benchmark dataset of the 
RALIC industrial software project. The RALIC benchmark dataset project 
is considered a large-scale software project [22,50]. This project was 
initiated and developed as a new access control system at University 
College London. The documentation reports of the RALIC project are 
provided in the RALIC dataset and in the thesis of Soo Lim, which can be 
accessed in [11, 22, 50]. To the best of our knowledge, the RALIC 
benchmark dataset is one of the first available and complete datasets in 
the RP field and contains a large set of requirements that need to be 
prioritised. 

Compared with other datasets, the RALIC benchmark dataset con-
tains detailed information on numerous requirements and stakeholders 
in the RALIC project. The ground truths that present the actual priority 
ranks of the RALIC requirements, can be used to evaluate performance 
accuracy. Hence, the RALIC dataset has been used to evaluate some 
existing RP techniques, as in [11, 27, 28]. On this basis, the RALIC 
dataset was used in this study to evaluate SRPTackle and achieve a fair 
performance comparison between SRPTackle and existing RP tech-
niques. A list of 122 requirements is provided in the truth table of the 
RALIC requirements, and it presents the actual results of the 

F. Hujainah et al.                                                                                                                                                                                                                               



Information and Software Technology 131 (2021) 106501

10

prioritisation of the requirements [11,50]. These requirements were 
categorised as general and specific requirements, where each general 
requirement may have its own specific requirements. A total of 49 
general and 73 specific requirements was noted. In this research, the 
medium and large requirement sets of the RALIC dataset were used to 
evaluate the performance of SRPTackle. 

5.5. Subjects 

A total of 127 individuals were reported as stakeholders of the RALIC 
project [11]. However, as stated in the documentation reports of the 
RALIC benchmark dataset project, 87 stakeholders were identified to be 
involved in the prioritisation process of the RALIC requirements by 
providing initial rating value for system requirements [11, 22, 50]. The 
full details of the stakeholders’ profiles and the requirements’ ratings 
from each participating stakeholder are reported in the documentation 
reports of the RALIC project, which can be obtained in [11, 22, 50]. To 
conduct a systematic and fair performance evaluation and comparison 
amongst SRPTackle, StakeRare, Lim et al.’s GA, Saffron and OSA, the 
experiments were conducted with considering the participation of the 
same 87 stakeholders whose profiles and requirements’ ratings were 
considered in the prioritization process of the conducted experiments in 
this study. 

5.6. Experiment execution 

As shown in Table 2, seven experiments were conducted using the 
RALIC requirements. The experiments aimed for a systematic and fair 
performance evaluation and comparison amongst SRPTackle, Stake-
Rare, Lim et al.’s GA, Saffron and OSA. These experiments were 
executed separately, and each experiment implemented the proposed 
SRPTackle technique on the basis of the defined steps of SRPTackle- 
Tool, which was presented in Section 4. Each experiment was con-
ducted within a specific objective and used a certain size of requirement 
set of the RALIC dataset. 

Exp. 1 and Exp. 5 were conducted to compare the performance of 
SRPTackle with that of StakeRare, Lim et al.’s GA and OSA. The 
experimental procedure of this experiment follows that of [11, 28, 49] to 
achieve a fair comparison with the reported results. Exp. 1 was executed 
using a medium set of requirements (containing 49 general re-
quirements), which is the same size of requirements used in assessing 
StakeRare, Lim et al.’s GA and OSA. By contrast, Exp. 5 was imple-
mented with the same number of RALIC requirements (large set of re-
quirements, including all of the specific requirements) used in 
evaluating the performance of StakeRare and Lim et al.’s GA. For Lim 
et al.’s GA, experiments were conducted with different initialisation 

values for the GA used in the prioritisation process. However, we 
selected the best-reported result of Lim et al.’s GA for comparison with 
the proposed SRPTackle. 

Furthermore, Exp. 2, Exp. 3 and Exp. 4 were performed to evaluate 
SRPTackle and compare its accuracy results with the Saffron technique. 
These experiments were conducted on the basis of the experimental 
procedure in [27] to obtain a fair comparison with the results of the 
Saffron technique published therein. In this manner, Exp. 2, Exp. 3 and 
Exp. 4 were implemented with large sets of requirements, consisting of 
50, 59 and 65 requirements, respectively. By contrast, the aim of con-
structing Exp. 6 is to assess SRPTackle’s performance in comparison 
with that of Saffron and OSA. Hence, to ensure a fair comparison, Exp. 6 
was implemented in accordance with the experimental procedure in [27, 
49]. Correspondingly, Exp. 6 was implemented to prioritise 80 general 
requirements and their specific requirements. Eventually, in accordance 
with the experimental procedure in [11], Exp. 7 was executed to assess 
the performance of SRPTackle and compared it with that of StakeRare 
using a large set of requirements, including the complete list of 122 
requirements (i.e. 49 general requirements and their 73 specific 
requirements). 

6. Experimental results 

In this section, we analyse and summarise the results obtained from 
the conducted experiments to answer the research questions presented 
in Section 5.1. We performed statistical analysis using SPSS 22 [52] to 
test the stated hypotheses. A two-tailed one-sample t-test was used to 
test the defined hypotheses. Considered to be the most recommended 
significance level by researchers and scientists [12,53], 5% (0.05) sta-
tistical significance level (P) was set for hypothesis testing. The selection 
criteria of 5% (0.05) significance level are presented in Table 3. 

6.1. RQ1: are the prioritisation results produced by SRPTackle more 
accurate (compared with the ground truth) than the prioritisation results 
produced by stakerare, Lim et al.’s GA and saffron? 

Table 4 presents a comparison of the accuracy results from 
SRPTackle with those from three alternative techniques (StakeRare, Lim 
et al.’s GA and Saffron) for each conducted experiment; the Pearson 
correlation coefficient was used, as described in Section 5.3. In Exp.1 
and Exp.5, the accuracy performance of SRPTackle is compared with 
that from StakeRare and Lim et al.’s GA. The accuracy performance of 
these two techniques was evaluated with the same number of RALIC 
requirements as stated in Section 5.5. 

The accuracy results in Exp. 1 and Exp. 5 (as depicted in Table 4) 
reveal that the proposed SRPTackle has better accuracy performance 
than the other two techniques. For Exp. 1 and Exp. 5, the accuracy re-
sults of SRPTackle are 0.9465 and 0.9371, respectively; those for 
StakeRare are 0.50 and 0.71, respectively; those for Lim et al.’s GA are 
0.9228 and 0.9135, respectively. The accuracy performance of 
SRPTackle was also compared with the Saffron technique, using the 
same number of requirements as in Exp. 2, 3, 4 and 6 for SRPTackle, as 
described in Section 5.5. The efficiency of SRPTackle is higher than that 
of the existing technique; the accuracy results for SRPTackle are 0.9399, 
0.9381, 0.93 and 0.9392 for Exp. 2, Exp. 3, Exp. 4 and Exp. 6, respec-
tively, whereas those for Saffron are 0.9231, 0.8156, 0.7669 and 0.7669, 
respectively. 

Table 5 presents the statistical results of the t-test of the SRPTackle in 
comparison with each specific technique (StakeRare, Lim et al.’s GA, 

Table 2 
Experimental details.  

Experiment No Size of 
requirement set 

Number of 
requirements 

RALIC requirement types 

Experiment 1 
(Exp. 1) 

Medium 49 General requirements 

Experiment 2 
(Exp. 2) 

Large 50 Specific requirements 

Experiment 3 
(Exp. 3) 

Large 65 Specific requirements 

Experiment 4 
(Exp. 4) 

Large 70 Specific requirements 

Experiment 5 
(Exp. 5) 

Large 73 Specific requirements 

Experiment 6 
(Exp. 6) 

Large 80 General requirements 
and their specific 
requirements 

Experiment 7 
(Exp. 7) 

Large 122 General requirements 
and their specific 
requirements  

Table 3 
Selection criteria.  

P-value Criteria Result 

p < 0.05 Reject null hypothesis 
p ≥ 0.05 Do not reject null hypothesis  
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Saffron) based on the accuracy results of conducted experiments in 
Table 4. As shown in Table 5, the obtained P values of SRPTackle and 
specific techniques are less than the 0.05 significance level. Thus, we can 
conclude that the first null hypothesis (H10Accuracy) is rejected at a sig-
nificance level of 0.05, and the accuracy of SRPTackle is significantly 
higher than that of StakeRare, Lim et al.’s GA and Saffron. 

Additionally, Fig. 6 depicts the average improvement percentages of 
SRPTackle relative to each of the selected techniques, with respect to the 
accuracy performance. In measuring the average accuracy improvement 
percentages, the accuracy improvement percentage is firstly measured 
on the basis of the obtained experimental accuracy results of each 
technique in each experiment, as presented in Table 4. Eq. (7), which is 
well-known for measuring the improvement percentage of performance 
testing for a technique [15, 54–56], was used to calculate the accuracy 
improvement percentages. 

AIPi,j =
PTj − ETi,j

ETi,j
× 100 (7) 

In the above equation, 
AIPi,j is the accuracy percentage improvement of the SRPT technique 

against the ith specific technique in the jth experiment; 
PTj is the accuracy result of the proposed SRPTackle technique in the 

jth experiment; and 
ETi,j is the accuracy result of the ith specific technique in the jth 

experiment. 
Subsequently, the average accuracy improvement of SRPTackle with 

respect to each of the specific technique on all experiments was calcu-
lated, as illustrated in Fig. 6. The accuracy efficiency of SRPTackle is 
2.58%, 59.16% and 19.28% better than that of StakeRare, Lim et al.’s 
GA and Saffron, respectively. Additionally, the overall average perfor-
mance of SRPTackle against all selected techniques demonstrates that 
the accuracy performance of SPRTackle is generally better than that of 
StakeRare, Lim et al.’s GA and Saffron in terms of accuracy at a per-
centage of 27.01%. 

6.2. RQ2: is SRPTackle less time consuming than Lim et al.’s GA and 
OSA? 

Fig. 7 presents a comparative time consumption performance of 
SRPTackle and two alternative techniques (Lim et al.’s GA and OSA) for 
producing the final prioritised list of requirements. In particular, the 
time consumption of SRPTackle is 5.02 s to prioritise 49 requirements of 
Exp. 1, whereas those for OSA and Lim et al.’s GA are 25.89 and 200 s, 
respectively. For Exp. 5, SRPTackle consumes 5.48 s, whereas Lim 
et al.’s GA consumes 200 s. For Exp. 6, the time consumption of 
SRPTackle is 5.52 s, whereas that for OSA is 40.64 s. As shown in Fig. 7, 
the performance of SRPTackle is more effective than that of the other 
two techniques, insofar as consuming less time for prioritising the me-
dium and large sets of requirements. 

We applied t-test to test the second null hypothesis (H20Time). Table 6 
depicts the t–test results based on the time consumption results of the 
conducted experiments (Fig. 7). The t-test’s results in Table 6 demon-
strate that the hypothesis H20Time should be rejected at a 0.05 signifi-
cance level because the obtained P-values are less than a 0.05 
significance level. The results also reveal that on the average, SRPTackle 
requires less time than Lim et al.’s GA and OSA. Hence, the statistical 
analyses evidently demonstrate that SRPTackle is a faster technique in 
performing prioritisation task than Lim et al.’s GA and OSA. 

7. Discussion 

Throughout this section, the potential phenomena that could artic-
ulate the trends achieved in the experiments’ analysis and comparisons 
are distinctly discussed, and the base of the proposed SRPTackle tech-
nique is clarified. 

Table 4 
Accuracy results produced by SRPTackle, StakeRare Lim et al.’s GA and saffron.  

Experiment Technique Accuracy Result 

Exp. 1 StakeRare 0.50  
Lim et al.’s GA 0.9228  
SRPTackle 0.9465 

Exp. 2 Saffron 0.923  
SRPTackle 0.9399 

Exp. 3 Saffron 0.8156  
SRPTackle 0.9381 

Exp. 4 Saffron 0.7669  
SRPTackle 0.93 

Exp. 6 Saffron 0.6756  
SRPTackle 0.9392 

Exp. 5 StakeRare 0.71  
Lim et al.’s GA 0.9135  
SRPTackle 0.9371 

Exp. 7 StakeRare 0.6050  
SRPTackle 0.9449  

Table 5 
Results of t-tests for accuracy.  

Technique Mean Std. Deviation P-value 

StakeRare 0.6050 0.1050 0.010 
SRPTackle 0.9428 0.0050 0.000 
Lim et al. GA 0.9185 0.0064 0.003 
SRPTackle 0.9418 0.0066 0.003 
Saffron 0.7953 0.1031 0.001 
SRPTackle 0.9364 0.0043 0.000  

Fig. 6. Overall improvement percentages.  
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In terms of accuracy performance, the statistical analyses of the 
experimental results demonstrate that the accuracy of SRPTacle is better 
than that of StakeRare, Lim et al.’s GA and Saffron. This result can be 
attributed to the fact that SRPTackle is comprehensive, and it minimises 
the risk caused by a lack of experience. In SRPTackle, the formulation of 
the RPV led to not being excessively dependant on experts for identi-
fying the RPV values of the requirements. The RPV formulation is con-
structed by applying the WSM method on the basis of the input 
requirement weights given by the stakeholders and the specified SPV of 
stakeholders by StakeQP. In contrast to existing techniques, the SPV of 
each participating stakeholder in the RP process is considered and 
executed in SRPTackle via the new SQP technique. The quantification 
and prioritisation of the participating stakeholders using StakeQP fa-
cilitates the identification of an accurate a stakeholder’s influence (SPV 
of each participating stakeholder) because StakeQP provides the ability 
to identify an accurate list of SPVs for the stakeholders whilst mini-
mising the need for expert participation in measuring the SPV, as vali-
dated in [6]. Then, the identified SPVs of the stakeholders are used in 
specifying the RPV of each requirement. Thus, measuring the influence 
of each stakeholder amongst the participating stakeholders accurately 
contributes to generate the accurately prioritised list of requirements in 
comparison with StakeRare, Lim et al.’s GA and Saffron. Consequently, 
SRPTackle can conduct the RP process whilst evaluating the influence of 
the various types of involved stakeholders in RP, in which the stake-
holders have different influences on the success of development projects 
and have limited and competing resources. In this regard, classifying the 
requirements and producing the prioritised list thereof on the basis of 
the identified RPVs via the clustering algorithm (K-means and 
K-means++), along with the BST, allows the SRPTackle technique to 
function without being heavily reliant on expert intervention in 
assigning the RPV for each requirement or in classifying, prioritising and 
generating the ranked list of requirements. By contrast, the RP processes 
of existing RP techniques depend too heavily on the involvement of 
professional expertise and require deep knowledge to initiate the pro-
cess, thus negatively influencing the reliability of the techniques in 
producing accurate results due to the bias induced by the judgement of 
the expert in making various decisions and cases where expertise is 
deficient [5, 6, 15]. 

The experimental results show that the efficiency of SRPTackle is 
superior to Lim et al.’s GA and OSA in terms of the time consumption for 
producing the prioritised list of requirements. This observation is true 
even though some of these techniques are implemented with semi-
automated execution types. This phenomenon could be attributed to the 
semiautomated process that was adopted herein to conduct the RP 
process with the use of the developed automation tool (SRPTackle-Tool). 
Executing the process of the SRPTackle technique with the automation 
SRPTackle-tool facilitates the automatic prioritisation, i.e. eliminating 
the manual process. Additionally, the ability of StakeQP to perform the 
SQP process for participating stakeholders with less time consumption 
reduces the time consumption for quantifying and prioritising the 
stakeholders in the prioritisation process of the SRPTackle. By contrast, 
Lim et al.’s GA and OSA heavily rely on professional expertise in con-
ducting the SQP process by specifying the SPV values of stakeholders on 
the basis of the manual inputs of the experts. Moreover, the utilisation of 
the speed features of the clustering algorithms in categorising and pri-
oritising the requirements minimises the time required to produce a 
ranked list of requirements in comparison with Lim et al.’s GA and OSA. 
These latter techniques perform pairwise comparisons and/or rely on 
experts to perform the process, thus consuming a considerable amount 
of time. Therefore, SRPTackle requires less time than either Lim et al.’s 
GA or OSA. 

Furthermore, certain factors, such as the number of comparisons, 
time, lack of automation and overreliance on expert involvement, play 
key roles in the scalability issue for most existing techniques [5, 13, 17]. 
For instance, in various RP techniques, such as the bubble sort, AHP and 
pairwise comparison, the prioritisation process is conducted by evalu-
ating the relative priorities between pairs of requirements [5, 13, 24]. 
The number of comparisons increases dramatically as the number of 
requirements increases, making the prioritisation process highly com-
plex and tiring. Consequently, the scalability of the prioritisation process 
is affected [10, 13, 24]. Additionally, a manual process with heavy 
reliance on experts to perform the process and the calculations to 
identify the relative priority value of each requirement can be complex 
and time consuming [13, 17, 57]. Hence, having to manage hundreds of 
requirements makes these RP techniques unmanageable [5, 13, 17]. In 
addition, when conducting an RP process, a scalable RP technique 
should work with a large set of requirements without consuming 
considerable amount of time and producing accurate results [58]. In 
SRPTackle, the combination of the RPV formulation function, K-means, 
K-means++, BST and the developed automation tool addresses the lack 
of scalability to a good extent. In particular, the results illustrate the 
ability of this technique to handle a large set of requirements efficiently, 
i.e. with reduced time consumption and improved accuracy in com-
parison with other existing scalable techniques. The RPV formulation is 
used to calculate the priority value of each requirement using the WSM 

Fig. 7. Time Consumption performance of SRPTackle, Lim et al.’s GA and OSA for producing the final prioritised list of requirements.  

Table 6 
Results of t-tests for time consumption.  

Technique Mean Std. Deviation P-value 

Lim et al.GA 210.00 14.1421 0.030 
SRPTackle 5.25 0.3252 0.028 
OSA 33.265 10.4298 0.139 
SRPTackle 5.27 0.3535 0.030  
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method based on the input requirement weights given by the stake-
holders, specified SPV of stakeholders, without performing any pairwise 
comparisons in formulating the RPV. This approach is beneficial because 
pairwise comparisons disrupt the effectiveness of dealing with a large set 
of requirements as the number of requirements increases and raises is-
sues of complexity in terms of implementing prioritisation and time 
consumption. Moreover, using the BST and clustering algorithm 
(K-means++ and K-means) in SRPTackle not only reduces expert biases 
by minimising the experts’ participation in generating the ranked list of 
requirements but also enables SRPTackle to work with a large set of 
requirements. The K-means algorithm provides the ability to cluster 
numerous requirements in the RALIC dataset into three specified clus-
ters on the basis the specified RPV of each requirement; such ability is 
shown in the experimentation results with K-means++ initialisation. 

Additionally, the BST is used in this research for sorting re-
quirements. The effectiveness of the BST in managing numerous re-
quirements to be sorted in a prioritised list, with fewer comparisons as 
compared to the AHP and bubble sort techniques, makes SRPTackle 
more effective in dealing with a large set of requirements. With the use 
of 122 RALIC dataset requirements in the experiment, the complexity of 
the total number of comparisons for BST is O(log n) in the best case, 
where the constructed BST is balanced, and O(n Log n) with an unbal-
anced BST, where n is the number of the requirements [17, 24, 59, 60]. 
The total number of comparisons using AHP or bubble sort is equal to (n 
* (n-1)/2), which is difficult to implement practically and consumes a 
considerable amount of time [15,24]. 

Insofar as StakeRare, OSA, Lim et al. GA, and Saffron, these tech-
niques are found to be less are found to be less time consuming and more 
accurate in producing prioritisation results as compared to other tech-
niques, such as AHP. However, the statistical results of the conducted 
experiments demonstrate the ability of SRPTackle to generate accurate 
results with less time consumption. Moreover, SRPTackle has salient 
properties in comparison with these alternative techniques in terms of 
being more effective in addressing the need for substantial professional 
participation in implementing the RP process; the alternative techniques 
are heavily dependant on good expertise to initiate and execute the 
prioritisation process of the technique. 

8. Threats to validity 

Experiment-based research is often subject to different types of val-
idity threats (i.e. conclusion, internal, construct and external validity) 
[48]. In this research, we attempted to minimise and eliminate these 
threats as much as possible; however, a few of these threats are beyond 
our control. 

External threats: Threats to external validity rise when experiments 
cannot be generalised to various forms of real-world problems. The 
threat here is that we cannot guarantee that the used benchmark con-
stitutes all types of real-world applications in software development 
sectors. To repress this threat, we select a benchmark dataset of an actual 
large software project (RALIC), which is a well-known benchmark 
dataset in the RP domain. To the best of our knowledge, the benchmark 
dataset of RALIC is one of the realistic, available and complete datasets 
in RP and SQP domains; it includes detailed information of numerous 
requirements and stakeholders of the RALIC project. Thus, the RALIC 
benchmark dataset is commonly utilised for evaluations and selected 
from real developed software system projects that are initiated and 
developed as new access control system at University College London. 
However, SRPTackle should be tested in additional industrial projects 
that are related to the different types of software project practices to 
enhance external validity. 

Internal threats: Threats to internal validity relates to factors which 
affect experiments without our awareness and/or which are beyond our 
control. One threat to internal validity comes from the measurement of 
time consumption for prioritising the requirements for each technique; 
such measurement is highly subjective to the running environment. 

Thus, the implementation of all techniques must be conducted in the 
same prioritisation environment. To minimise this threat, we compared 
the time consumption performance of SRPTackle with the tools of the 
three techniques evaluated with the RALIC dataset and with the same 
number of requirements as the present study. The comparison could 
present an indication for prioritisation time; however, another threat 
here is related to the implementation of language differences in the 
techniques’ tools. In addition, although the performance of these tech-
niques’ tools can be influenced by the specifications of the machine (e.g. 
desktop or laptop) used to run the tools, the execution of the tools 
compared herein were conducted on a machine with specifications 
defined by the authors to be the minimum specifications required to 
execute the tools efficiently. 

Construct validity: Construct validity threats are related to the 
application–theory relationship. One of the construct validity threats 
arises from automation process issues. The automation process, 
although timesaving and with minimal to no human intervention, may 
elicit an issue of producing an unpredictable processing error or a low- 
quality result in case the implementer has not followed the process 
implementation structure of SRPTackle. The reason is that the auto-
mated machine cannot execute a flexible variety of tasks because it is 
restricted to execute the task on the basis of what it has been pro-
grammed to do. Similarly, the automation process of SRPTackle is 
implemented in the full process of prioritising the requirements on the 
basis of the defined criteria that are used to obtain RIWV and RCWV, and 
the specified SPV of the participating stakeholder. Hence, the SRPTackle 
automation process has the capability of completing the process 
accordingly if the RIWV, RCWV, and the SPV have been upload on the 
basis of the stated process implementation structure of the SRPTackle. 
To reduce this threat, the full process of the SRPTackle is distinctly 
elaborated to assist the implementer in obtaining the SPV, RIWV and 
RCWV on the basis of the defined criteria. Thus, the implementer is 
recommended to read the given elucidation of the SRPTackle imple-
mentation process judiciously. Another threat here is related to the 
unforeseen costs that would be needed to keep the SRPTackle-tool’s 
processes up to date because the costs disbursed in upgrading with a new 
protocol would entail high operating costs in relation to the research and 
development that needs to be conducted. 

Conclusion validity: Conclusion threats involve the relationship be-
tween the treatment and the outcome. The threats here are related to the 
conducted comparison with existing RP techniques. Within RP, various 
techniques are compared. However, we were unable to compare our 
approach with all these techniques due to different reasons, such as the 
unavailability of the source code of these techniques for public use. To 
mitigate this threat, we compared the performance of the proposed 
SRPTackle technique with those techniques considered to be the most 
relevant to SRPTackle, as these selected techniques were evaluated 
using the RALIC dataset with the same size of requirements and the same 
accuracy measurement method as the present study. Moreover, these 
compared techniques execute their own SQP processes during the pri-
oritisation of requirements similar to SRPTackle. To the best of our 
knowledge, the above-mentioned techniques and benchmarks for com-
parison are the best results published so far using the RALIC benchmark 
dataset. 

9. SRPTackle Managerial contributions 

Based on the performance evaluations, it is evident that SRPTackle 
can introduce a number of contributions to the managerial side in the 
development process of software system projects. SRPTackle is one of 
the first techniques to conduct the RP process without being exceedingly 
reliant on the participation of human expertise. By using the clear 
implementation details from the constructed RPV formulation function 
for specifying the RPV of each requirement, the classification algorithm 
using K-means and K-means++, and the BST for classifying and priori-
tising the requirements, a project manager can produce a prioritised list 
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of requirements with minimal expert participation. Thus, SRPTackle can 
enable the project manager to minimise cost expenses in project devel-
opment that are typically required, e.g. contracting an expert to initiate 
and execute the RP process. 

Additionally, as SRPTackle can generate more accurate prioritisation 
results than the alternative techniques insofar as producing a prioritised 
list of requirements with classification levels and RPV values for large- 
scale projects, the project manager can determine highly important re-
quirements that need to be implemented early in the project develop-
ment process. This will consequently assist the project manager in 
optimising the usage of limited resources effectively during the devel-
opment process, and in constructing an effective plan for the financial 
implications, requirements, and staged deliveries. This allows for the 
expansion of projects and excellent outputs, increasing the likelihood of 
securing a successful system project. 

Furthermore, with the SRPTackle features of time effectiveness, the 
ability to scale well with a large number of requirements, automation, 
and clear implementation guidelines, the project manager can perform 
the RP process for projects with large-scale requirements in a profes-
sional and proper manner, without necessitating an extensive amount of 
effort (e.g. time workloads, tiring tedious manual processes, the need for 
the involvement of professional expertise, computational complexity, 
and likelihood of human errors). Eventually, with the presence of the 
SRPTackle technique and its automation tools, the development process 
of a software system project will possess a lower likelihood of failure 
from shortcomings, such as a shortage of expertise, an omission of 
important requirements, biased results of the RP, and limited constraints 
(e.g. time and budget constraints). 

10. Conclusion and future directions 

In this research, a new semi-automated RP technique (SRPTackle) 
and automation implementation tool (SRPTackle-Tool) were proposed 
to address challenges in existing RP techniques, such as scalability, 
excessive reliance on expert intervention, time consumption, a lack of 
automation, and a lack of a SQP process for evaluating the stakeholder 
impact in prioritising the requirements. The proposed SRPTackle pro-
vides a semi-automated process for prioritising a large set of re-
quirements without a manual process, while minimising the need for 
expert intervention in assigning the priority values to requirements, 
classifying the requirements, conducting the SQP process, and produc-
ing a ranked list of requirements. The proposed SRPTackle technique is 
based on a combination of the RPV formulation function using the WSM 
method, clustering algorithms (K-means and K-means++), and the BST. 
The WSM method utilised to specify the RPV value of each requirement 
is based on the defined SPV of each stakeholder and the assigned initial 
weight value of the requirement that is obtained from the participating 
stakeholders. To classify the requirements into three defined levels 
(high, medium, and low), the K-means and K-means++ algorithms were 
employed to classify the requirements based on their specified RPVs. 
Lastly, the BST algorithm was employed to sort the requirements, and 
produce the prioritised list of requirements. Seven experiments were 
conducted to assess the performance of SRPTackle with medium and 
large sets of requirements from the RALIC benchmark dataset. The 
findings demonstrate that SRPTackle can handle a large set of re-
quirements and produce results that are more accurate in less time, and 
is more effective in addressing the defined RP limitations as compared to 
the other existing RP techniques. 

Through the conducted experiments and comprehensive literature 
exploration in this research, several limitations have been revealed, 
leading to future trends that can be suggested to extend this research. A 
potential future trend for improving SRPTackle performance is catering 
to the independencies of the requirements. Handling requirement in-
terdependencies is another important consideration in RP [5, 13, 23]. 
The proposed SRPTackle assumes that all the requirements are inde-
pendent and places concerns regarding interdependencies as future 

work. Moreover, as revealed herein, most existing RP techniques fail to 
address requirement interdependencies. Thus, the SRPTackle technique 
is recommended to handle the dependencies amongst requirements 
automatically, especially with a large set of requirements. 

Other future trends can focus on extending the implications of 
SRPTackle to different project datasets. In this research, SRPTackle was 
applied to the RALIC benchmark dataset, which is from a large actual 
software project. However, with limited resources and other constraints 
in accessing other benchmark datasets in the RP and SQP domains, we 
did not apply the proposed SRPTackle technique to other project data-
sets. Thus, we suggest expanding the implications of SRPTackle to 
different datasets of software projects. Additionally, the implications of 
the proposed technique in various global software project practices are 
desirable for improved applicability due to the encouraging evaluation 
results obtained herein. 
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