
SRPTackle: A semi-automated requirements prioritisation technique
for scalable requirements of software system projects

Downloaded from: https://research.chalmers.se, 2021-08-31 11:33 UTC

Citation for the original published paper (version of record):
Hujainah, F., Binti Abu Bakar, R., Nasser, A. et al (2021)
SRPTackle: A semi-automated requirements prioritisation technique for scalable requirements of
software system projects
Information and Software Technology, 131
http://dx.doi.org/10.1016/j.infsof.2020.106501

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Information and Software Technology 131 (2021) 106501

Available online 29 November 2020
0950-5849/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

SRPTackle: A semi-automated requirements prioritisation technique for
scalable requirements of software system projects

Fadhl Hujainah a,*, Rohani Binti Abu Bakar b, Abdullah B. Nasser b, Basheer Al-haimi c,
Kamal Z. Zamli b

a Computer Science and Engineering Department, Chalmers and University of Gothenburg, 41296 Gothenburg, Sweden
b Faculty of Computing, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
c School of Management, Hebei University, Baoding, China

A B S T R A C T

Context: Requirement prioritisation (RP) is often used to select the most important system requirements as perceived by system stakeholders. RP plays a vital role in
ensuring the development of a quality system with defined constraints. However, a closer look at existing RP techniques reveals that these techniques suffer from
some key challenges, such as scalability, lack of quantification, insufficient prioritisation of participating stakeholders, overreliance on the participation of pro-
fessional expertise, lack of automation and excessive time consumption. These key challenges serve as the motivation for the present research.
Objective: This study aims to propose a new semiautomated scalable prioritisation technique called ‘SRPTackle’ to address the key challenges.
Method: SRPTackle provides a semiautomated process based on a combination of a constructed requirement priority value formulation function using a multi-criteria
decision-making method (i.e. weighted sum model), clustering algorithms (K-means and K-means++) and a binary search tree to minimise the need for expert
involvement and increase efficiency. The effectiveness of SRPTackle is assessed by conducting seven experiments using a benchmark dataset from a large actual
software project.
Results: Experiment results reveal that SRPTackle can obtain 93.0% and 94.65% as minimum and maximum accuracy percentages, respectively. These values are
better than those of alternative techniques. The findings also demonstrate the capability of SRPTackle to prioritise large-scale requirements with reduced time
consumption and its effectiveness in addressing the key challenges in comparison with other techniques.
Conclusion: With the time effectiveness, ability to scale well with numerous requirements, automation and clear implementation guidelines of SRPTackle, project
managers can perform RP for large-scale requirements in a proper manner, without necessitating an extensive amount of effort (e.g. tedious manual processes, need
for the involvement of experts and time workload).

1. Introduction

To ensure the fulfilment of the stakeholders’ requirements, various
decisions have to be made through software development [1,2].
Securing stakeholders’ core requirements is a primary driver to achieve
good quality in a system [3,4]. Many system projects have several re-
quirements, and implementing all of them with limited resources (e.g.
insufficient budget, time and technical staff) is difficult [5,6]. Thus,
requirement prioritisation (RP) is often executed to assist requirement
engineers in determining the order in which to implement requirements
as perceived by the stakeholders of a system. In RP, the most important
or highest risk requirement is selected to produce a quality system [5,7].
RP is a crucial process in software development for decision-making
because information on priorities is critical for project managers to
resolve conflicts, plan for staged deliveries and make necessary
trade-offs [5,8]. Thus, the influence of RP cannot be overstated [5,9].

RP is a complex decision-making process [5,10]. To execute such
process, various techniques, such as StakeRare [11] and Drank [12],
have been proposed. Although useful, existing RP techniques suffer from
key challenges, such as lack of scalability (i.e. ability to manage
numerous requirements); lack of time efficiency, especially in priori-
tising a large set of requirements; lack of stakeholder quantification and
prioritisation (SQP) processes for evaluating the effects of participating
stakeholders in prioritising requirements; heavy reliance on the
involvement of experts in conducting the prioritisation process; and lack
of automation [3, 5, 13, 14].

The scalability issue has a critical effect on the prioritisation process
in industrial projects because majority of current industrial projects
have numerous requirements [5,13]. A scalable RP technique should be
able to work with a large set of requirements when performing RP within
a reasonable time whilst producing accurate results [3, 5, 13]. In RP, sets
of requirements are categorised into three different categories, i.e. small

* Corresponding author.
E-mail address: fadelhogina@gmail.com (F. Hujainah).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2020.106501
Received 29 March 2020; Received in revised form 23 November 2020; Accepted 24 November 2020

mailto:fadelhogina@gmail.com
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2020.106501
https://doi.org/10.1016/j.infsof.2020.106501
https://doi.org/10.1016/j.infsof.2020.106501
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2020.106501&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 131 (2021) 106501

2

(number of requirements < 15), medium (15 <= number of re-
quirements < 50) and large (number of requirements >= 50) sets, as
defined in [15]. Despite the fact that software products have become
more complex (e.g. containing a large set of requirements), most exist-
ing RP techniques can only work well with a few requirements; such
techniques include the analytic hierarchy process (AHP) technique [10,
13]. Fig. 1 presents the percentage of the acceptable handling of the
scalability issue within RP techniques, as highlighted in a study on
existing 107 RP techniques in [5,13].

As shown in Fig. 1, the percentage of the poor handling of scalability
issues on the basis of the 107 RP techniques is 93%, with only 7% suc-
cessful ones. amongst the successful ones, existing techniques, such as
PHandler [15] and StakeRare [11], still face issues regarding manual
processing and heavy reliance on the participation of experts in the
prioritisation process (i.e. in assigning the priority value for each
requirement, classifying the requirements, and evaluating the influence
of participating stakeholders in the prioritisation). The latter raises the
issue of potential bias being introduced by experts because such bias can
influence the accuracy of a technique [5,16]. Furthermore, for most
current techniques, certain factors, such as the number of comparisons,
time, lack of automation and heavy reliance on expert participation,
play key roles with regard to the scalability problem [5, 13, 17]. In most
cases, the stakeholders of the system must rate the importance degree
and make comparisons between each requirement. This process be-
comes even more complex as the number of requirements increases [3,
5]. Additionally, a manual process that heavily relies heavily on experts
to conduct the procedure and measurements and assess the relative
priority value of each requirement can also be counterproductive and
time consuming. Therefore, having to handle a large set of requirements
makes these RP techniques unmanageable [13,17]. Excessive reliance
on professional expertise is not preferred due to threats to the validity of
the technique if an expertise shortage occurs [6, 15, 18]. In such con-
ditions, interpreting and understanding the requirements for the tech-
nique’s initiation and implementation can become difficult. Moreover,
such approach increases the likelihood of implementing the technique in
an improper and/or nonprofessional manner, thus directly affecting the
quality of results [5, 6, 15]. The potential biases induced by experts arise
in evaluating the respective impact degree of the participating stake-
holders in RP and specifying the priority values of the requirements or
classifying the requirements. These biased assessments can also influ-
ence the quality of the prioritised results with respect to specifying ac-
curate requirement priority values (RPVs) and the quality of the most
important requirements to be developed to secure a successful software
system project [5, 6, 15].

In consideration of numerous requirements, a lack of automation
during the RP process influences the efficiency of the technique because
RP becomes complicated due to the effort required [5, 13, 17]. Manual
RP affects time efficiency [5, 13, 19]. An increase in the number of re-
quirements considerably affects time efficiency because of the

complexity of implementing prioritisation. Such complexity is related to
the high number of comparisons and the manual processes required to
execute the computational calculations for specifying RPVs and pro-
ducing a prioritised list of requirements [5, 12, 13, 15]. Furthermore, the
selection of stakeholders who are involved in the prioritisation process
of the requirements is crucial to securing accurate RP results [5, 6, 11,
15]. A stakeholder’s influence on system requirements and development
success varies from one stakeholder to another; moreover, the number of
participating stakeholders of diverse types can be enormous, with each
stakeholder interpreting their requirements differently [6, 11, 20].
Hence, an SQP process is conducted, with an aim to identify a stake-
holder priority value (SPV) for each stakeholder and prioritise the
stakeholders [6, 18, 20]. This process assists in identifying stakeholders
who have a greater influence on project success, leading to the selection
of the most essential requirements for important stakeholders and thus a
successful system [5, 6, 15]. However, most of the existing RP tech-
niques do not execute an SQP process. A few techniques perform the SQP
process manually and rely heavily on substantial professional human
intervention to specify the SPV of each participating stakeholder. This
approach provides high abstract details without providing standard
measurement criteria for quantifying and prioritising the stakeholders
on the basis of the SQP attributes; however, it is not time efficient [5, 21,
22].

To cope with these key challenges, this study aims to propose a new
semiautomated technique named ‘SRPTackle’. SRPTackle presents a
new process for prioritising requirements on the basis of a combination
of the following: a constructed RPV formulation using a multi-criteria
decision-making method (i.e. weighted sum model [WSM]), a classi-
fying algorithm (i.e. K-means and K-means++) and a binary search tree
(BST). The contributions of this work can be summarised as follows:

• A new RP technique called ‘SRPTackle’ is proposed. This technique
presents low-level details for the automatic implementation of pri-
oritisation for scalable requirements in software system projects,
without requiring a considerable amount of effort (e.g. need for ex-
perts’ participation and/or a tedious manual process in addition to
potential human faults in the manual process and time workload).
SRPTackle supports the RP process in system projects that contain
various types of stakeholders with competing interests and limited
resources (i.e. where each stakeholder defines their needs differ-
ently). SRPTackle also evaluates the influences of participating
stakeholders by identifying their SPV values automatically with
minimal expert involvement. The SPV values are considered in
specifying the priority value of each requirement. To produce a
prioritised list of requirements, SRPTackle employs a clustering al-
gorithm (K-means and K-means++) and BST, along with a con-
structed RPV formulation function, on the basis of the WSM method.

• The development of the automation implementation tool
(SRPTackle-Tool) along with presenting clear implementation

Fig. 1. Percentage of the existence of the scalability issue in RP techniques.

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

3

guidelines for automating the SRPTackle process and supporting
straightforward implementation of the proposed technique in in-
dustrial and academic sectors.

• The empirical evaluation of SRPTackle is based on a large real soft-
ware project to affirm its capability to address the key issues in
existing RP techniques.

The remainder of this paper is structured as follows: Section 2 de-
scribes related work on RP. Section 3 presents a detailed description of
SRPTackle, with respect to the proposed process. Section 4 illustrates an
automation implementation tool developed for SRPTackle. Section 5
discusses an assessment of the proposed SRPTackle technique. Section 6
enumerates the experimental results. Section 7 presents a detailed dis-
cussion about the trends observed during the experimental analysis and
comparison, along with essential clarifications associated to the base of
the proposed SRPTackle technique. Section 8 elaborates on threats to
validity. Section 9 explores the managerial contributions of SRPTackle.
Lastly, Section 10 concludes the study and provides recommendations
for future work.

2. Related work

The execution of RP in software development has led to an efficient
negotiation of precise requirements [1,23]. These precise requirement
negotiations assist software engineers in eliminating unnecessary or
contradictory requirements [5,13]. Additionally, an RP process can
assist in securing an effective implementation schedule, allowing project
managers to modify project resources and delivery dates on the basis of
environmental circumstances [5,15]. Project managers also improve
stakeholders’ satisfaction by conducting the RP process and increasing
the likelihood that their preferred requirements are implemented.
Hence, RP makes the rejection of projects after development less likely
through the creation of clear and precise requirements [13].

To date, various techniques have been introduced to perform a pri-
oritisation process for the requirements of a system. The most straight-
forward and common RP technique is perhaps the one that is based on
numerical ranking [5, 13, 14]. This technique performs the prioritisa-
tion process manually by classifying the requirements into three priority
groups: high, middle and low groups [5, 13, 15]. The classification is
performed according to stakeholders’ preferences and expert judgement
[5,13]. Likewise, a priority group technique executes the RP process by
initially categorising the requirements into three groups [5,13]. Unlike
the numerical assignment technique, the priority group technique
groups requirements into new groups repeatedly, until only one
requirement remains in each categorised group [5,13]. The ranking
technique is another RP technique that prioritises requirements in a
manner similar to the numerical assignment technique. The difference is
in using a linear approach, where a value of 1 will be assigned to the
most important requirement, a value of 2 to the second most important
requirement, and so on, until the least important requirement is assigned
with the value of n, which indicates the complete number of re-
quirements in the set [15]. Owing to the difficulty in aligning the views
of several stakeholders, the ranking technique can only be convenient
when performing the RP process with a single participating stakeholder
[5, 13, 14]. In the top-ten technique, the prioritisation is performed by a
number of various stakeholders, who are responsible for selecting their
own top ten requirements [5,13]. These techniques (numerical assign-
ment, top-ten and priority group and ranking) are suitable for a small
dataset of requirements and have inabilities and/or disadvantages in
dealing with large-scale requirements, specifying the relative priority
value of each requirement and catering the SQP process to evaluate
participating stakeholders [5,13].

As an improvement of the numerical ranking approach, several
works in the literature adopt the AHP technique. Specifically, the AHP
technique performs the prioritisation process by manually executing
pairwise comparisons on the basis of experts’ judgements, without

considering the SQP process for participating stakeholders [5,13].
Although the AHP technique is considered one of the best techniques in
terms of reliability, the AHP is not suitable for a large number of re-
quirements, as of the number of pairwise comparisons will increase as
the number of requirements increases [5,13]. Moreover, the AHP has
issues on time consumption and complexity when used with a large scale
of requirements [5,13]. As such, a hierarchy AHP (HAHP) technique has
been presented, with the main purpose of addressing the scalability is-
sues in AHP techniques [14, 15, 24]. HAHP succeeded in reducing the
number of comparisons by only comparing requirements on the same
hierarchy level [5,13]. However, the HAHP technique is less reliable and
fault tolerant compared with AHP, and is more difficult to apply [5,13].
In a similar work, the ReDCCahp introduces a new method of dynamic
consistency checking to eliminate the redundant AHP comparisons, ul-
timately minimising the number of pairwise comparisons [10].
Combining AHP with neural network, the PHandler approach auto-
mated the assignment of priority value for each requirement [8,15].

Apart from adopting neural networks, some works focus on machine
learning approaches. In CBRanking, machine learning approach is
applied to predict preference values of selected pairs and to generate
approximate ranks for requirements [25]. In other related works, the
interactive genetic algorithm (GA) technique optimises the list of pri-
oritised requirements by minimising the number of comparisons [26].
Extending the existing work on StakeRare [11] and Saffron [27] (i.e.
techniques based on the application of social networks and collaborative
filtering), Lim et al. applied the GA to rank the impact of each partici-
pating stakeholder in assigning the priority value for each requirement
[28]. Similarly, the WCW approach adopts a hybrid grey wolf and whale
optimisation algorithm to rank requirements [29].

Based on the aforementioned works, a number of general observa-
tions can be deduced. Firstly, most, if not all, of the related techniques
treat all participating stakeholders at par, and the same impact degree is
assigned to all entities. Thus, their credibility falls short as different
stakeholders may have different contribution and focus within the RP
process [5]. Secondly, despite the usefulness of these techniques, one
major challenge in these techniques is that they require deep expertise
and knowledge to initiate, interpret and execute their prioritisation
processes. This challenge incorporates human nature biases induced by
experts, or threats related to the technique’s validity in the absence of
human experts [5,15]. Finally, the majority of these approaches lack an
automated prioritisation process and are not cost-effective with respect
to time utilisation [5].

Supporting the aforementioned observations, various review studies
have been conducted to critically analyse the strengths and challenges of
existing RP techniques. Some common and recent studies include those
of Sufian et al. [14], Achimugu et al. [13], and Hujainah et al. [5], who
presented critical and comprehensive analyses of 40, 49, and 108 RP
techniques, respectively . The findings of these studies, along with those
of other studies [9, 21, 30, 31], demonstrated that the existing tech-
niques face major limitations as regards to scalability, cost effectiveness
in terms of time consumption, heavy reliance on experts to initiate and
execute the prioritisation process, the lack of an SQP process for eval-
uating the impacts of stakeholders on system requirements and a lack of
automation. Therefore, to address these limitations, this paper proposes
a new semi-automated technique for scalable requirements (SRPTackle),
and constructs a new automation implementation tool (SRPTackle-Tool)
for providing clear implementation guidelines to automate the
SRPTackle process and support straightforward execution of the tech-
nique in industrial and academic sectors. The following section provides
a detailed explanation of SRPTackle.

3. Proposed SRPTackle technique

Supporting fully automated prioritisation can mitigate repetitive
manual operations but should not impede human experts’ judgement
and stakeholders’ involvement during the prioritisation process.

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

4

However, in RP, stakeholders’ participation and expert roles cannot be
totally eliminated due to the participation of software product where
human expertise is important, and the prioritisation process has to be
conducted on the basis of stakeholder preferences [5, 12, 13]. Thus, and
based on [5, 12, 13], recommendation and attempts on automating parts
of the RP process and the essential elements of conducting RP reported
in [5,32], the prioritisation process of the SRPTackle is constructed as a
semi-automated process to address the RP key limitations.

The process of the SRPTackle technique is illustrated in Fig. 2. It
consists of two main phases: pre- and post-prioritisation phases. The aim
of conducting the process of the SRPTackle is related to establish the
semi-automated process of SRPTackle in prioritising the requirements.
The pre-prioritisation phase is constructed initially in the SRPTackle
technique to collect stakeholders’ preferences, in which participating
stakeholders assign an initial weighting value to each requirement,
which should be obtained to perform the prioritisation process. Thus,
this phase is considered the basis for performing the full process of the
pre-prioritisation phase in an automated manner. This step can assist to
automate the process and minimise the need for expert participation in
terms of assessing stakeholders’ impacts and formulating the priority
value of each requirement, and classifying and generating the prioritised
list of requirements. The following subsections provide the detailed
description of each phase of the SRPTackle technique.

3.1. Pre-prioritisation phase

The aim of this phase is to obtain initial weighting values for the
requirements from stakeholders, which will be used as inputs in the post-
prioritisation phase. In the SRPTackle technique, participating stake-
holders assign an initial weighting value to each requirement on the
basis of two prioritisation criteria: importance and cost. These defined
criteria are the most significant prioritisation criteria in prioritising re-
quirements [5,33].

The usage of these two criteria (importance and cost) can assist in
guaranteeing the production of a balanced list of prioritised

requirements based on the perspectives of all stakeholder types. In this
example, the stakeholder types are categorised as functional benefi-
ciaries, technical stakeholders and commercial stakeholders [5, 33, 34].
The importance criteria are used to prioritise requirements according to
their importance to the needs of functional beneficiary stakeholders
(users and customers) to estimate their expected satisfaction. In
contrast, prioritising requirements on the basis of cost criteria is per-
formed by technical (i.e. development teams) and commercial (i.e.
business analysts and marketing managers) stakeholders to specify the
priority order of the requirements according to the required cost for each
requirement to be implemented [5,34]. Most current industrial com-
panies aim to prioritise requirements on the basis of the importance
criteria to obtain stakeholders’ expectations and to use the cost criteria
to prioritise requirements according to the required cost for imple-
menting each requirement [5,34]. In SRPTackle, functional beneficiary
stakeholders should assign the weight value for each requirement on the
basis of the importance criteria. This weight value is denoted as the
requirement importance weight value (RIWV) and refers to the impor-
tance of the requirement to the functional beneficiary stakeholders (e.g.
whether it is to be implemented and delivered first). In contrast, tech-
nical and commercial stakeholders assign a weight value to each
requirement according to the cost of implementation. This assigned
weight value is denoted as the requirement cost weight value (RCWV).
The weight values are employed on a scale of 1 (lowest weighting value)
to 5 (highest weighting value). The RIWV and RCWV serve as inputs for
conducting the, post-prioritisation phase.

3.2. Post-prioritisation phase

In this phase, the prioritisation process is executed, based on the
initial weight values of the requirements. The full implementation of this
phase is conducted in four steps: specifying the SPV for each stake-
holder, formulating the RPV, classifying and generating the prioritised
list of requirements by employing the K-means and K-means++ algo-
rithms, and applying the BST algorithm. The following subsections

Fig. 2. Process of the proposed SRPTackle technique.

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

5

explain the details of each step.

3.2.1. Formulation of the requirement priority value
In this step, the RPV for each requirement is formulated by applying

the WSM method, which is considered one of the most commonly
applied and useful methods in performing the process of multi-criteria
decision-making [35–38]. The WSM method has silent properties of
simplicity and time efficiency, i.e. the priority of variants can be eval-
uated and revealed over listed criteria in a shorter time with an easily
applicable computational process relative to other multi-criteria deci-
sion-making methods, such as AHP [35–38].

Additionally, unlike existing RP techniques, SRPTackle evaluates the
influences of participating stakeholders in the RP process, which are
quantified and prioritised by identifying the impact degree (SPV value)
of each stakeholder in the RP. The SPV denotes the impact degree
(priority) value of each participating stakeholder (SPV) in the RP pro-
cess. The SPV values are considered in specifying the priority value of
each requirement. SRPTackle uses StakeQP to conduct the SQP process
to evaluate the influences of participating stakeholders by identifying
the SPV of each participating stakeholder in the prioritisation of re-
quirements. The StakeQP is a newer SQP technique with an automation
implementation tool (StakeQP-AIT) that evaluates stakeholders’ im-
pacts on the basis of attributes (called StakeQP attributes): role influ-
ence, positional power, interest and experience with respect to the
knowledge and education background attributes, as documented in [6].
StakeQP provides a semi-automated process for quantifying and pri-
oritising stakeholders on the basis of the new attribute measurement
criteria for each attribute (AMC). StakeQP also employs a multi-attribute
decision-making method, namely, the ‘technique of order preference
similarity to the ideal solution’ to specify the SPV of each stakeholder.
The AMC refers to the measurement used to assess stakeholders’ influ-
ence(s) on each attribute [6]. A higher SPV indicates a more significant
stakeholder. The calculation of RPV is executed on the basis of the WSM
method and considers the SPV of each participating stakeholder, as
shown in Eq. (1), in which three inputs are used to identify the RPV:
RIWV, RCWV and SPV.

RPVi =
(∑

RIWVi,s ∗ SPVs

)
+

(∑
RCWVi,s ∗ SPVs

)
(1)

Here,
RIWV refers to the weight value of the ith requirement that is given

from the sth stakeholder, based on the importance criteria;
RCWV refers to the weight value of the ith requirement that is given

from the sth stakeholder, based on the cost criteria; and
SPV refers to priority value associated with the sth stakeholder.
The RIWV and RCWV are obtained from the pre-prioritisation phase

(as described in Section 3.2). The SPV of each participating stakeholder
is obtained by executing the StakeQP technique in [6]. The output of this
step is the RPV for each requirement, which will be used as an input for
the next step in classifying the requirements.

3.2.2. Classifying the requirements
Clustering refers to unsupervised learning classification, with the

aim of classifying unlabelled data points into several classifications with
respect to information found in the data that describes the points and
their relations, such as a suitable similarity measure [39–42]. One
commonly used clustering algorithm is K-means [39,43]. The K-means
algorithm aims to cluster data points into a number of clusters, where
each cluster has its own centroids, and in which each point is grouped to
the cluster with the nearest centroid [40,44]. K-means has salient ad-
vantages in simplicity (simple and easy to implement for handling
practical problems) [39, 45, 46], speed (computationally fast) [39, 45,
46], and efficiency in working with large datasets that contain numeric
values [39, 43, 46], as compared to other clustering methods, such as
K-medoids, partitioning around medoids, ’clustering large applications’,
and fuzzy clustering. Therefore, K-means is used in this study to cluster

the requirements based on their obtained RPVs, in which the numeric
values represent the priority value of each requirement.

The cluster centroids are considered as crucial elements in the K-
means algorithm. The performance of the K-means algorithm with
respect to the speed (time utilisation with number of iterations) and
accuracy to find the optimal clustering can be affected by the random
initialisation of the clusters’ centroids. In that regard, improper centroid
initialisation can lead to drawbacks in terms of slower convergence
(requiring a high number of iterations to converge), empty clusters, and
a higher probability of getting stuck in bad local minima, which can lead
to a low-accuracy result in clustering the data [39,43]. Hence, the
K-means algorithm is considered to be sensitive to the selection of initial
centroids; however, this can be managed by adopting a proper initiali-
sation method for initialising the cluster centroids instead of random
selection [39,43]. The K-means++ algorithm is presented in [43] as an
initialisation method for centroid selection in the K-means algorithm.
The K-means++ algorithm adds value by improving the accuracy and
the speed of the K-means algorithm, as proven in [43]. The initialisation
method of K-means++ has been proven to address the sensitivity to
initial centroid selection. In particular, the performance using the
K-means++ initialisation method substantially outperforms K-means
with random centroid initialisation in terms of producing more accurate
clustering solutions and requiring less time consumption for conducting
the clustering process, as fewer iterations are required to help achieve
local search convergence [43]. Moreover, the process of K-means++ is
fast and easy to implement in real practice [39,43]. As a result,
K-means++ is selected in SRPTackle as the initialisation method for the
centroid selection of the K-means algorithm.

In SRPTackle, the number of clusters (k) is specified to be three,
based on the numerical assignment technique, which recommends to
group the requirements into three levels (high, medium, and low) [5,
13]. However, in the proposed SRPTackle, the requirements are classi-
fied based on their obtained RPV values, rather than by asking a
stakeholder to classify them as in the NA technique. With a large number
of clusters (e.g. 100 clusters), the speed performance of the K-means++

can be reduced because of the high number of iterations required, which
can lead to some time utilisation constraints in the application of
massive data practices [39,43]. This may relate to the sequential nature
of the K-means++ algorithm, i.e. making an iteration over the data to
initiate each centroid. In this regard, 99 iterations are required to find
the centroids for the 100th cluster, as the number of iterations is equal to
(K-1) in K-means++ [39,43]. However, with the specified number of
clusters in SRPTackle (three clusters), the K-means ++ algorithm can
perform the initialisation for three cluster centroids without consuming
excessive time, as the K-means++ algorithm will need only two itera-
tions to initialise the three cluster centroids (the first centroid is assigned
uniformly at random from the data points, and then two iterations to
initialise the other two centroids(k-1)) [39,43]. The classification of
each requirement to each group (cluster) is performed based on the
process of K-means++ and K-means algorithms. Fig. 3 presents the
pseudo code of the process for clustering the requirements into three
clusters based on one element, i.e. the RPV value of each requirement.

The implementation steps of the clustering process start with the
initialisation of centroids (c1, c2, c3) for the three clusters [43]. The
initialisation mechanism of the K-means++ algorithm is presented in
lines 1 to 5 of Fig. 3. The first centroid (c1) is initialised randomly to any
requirement RPV value (yr) from Y, as shown in line 1. The steps in lines
2 to 5 are recursively executed to initialise the next centroids, until all
centroids of the defined clusters have been chosen. In line 3, the distance
yr to the nearest defined centroid ci is computed using the Euclidean
distance as shown in Eq. (2). This is the most common definition, owing
to its computational simplicity, i.e. its straightforward manner in
computing the distance at each iteration [43,44]. The probability for
each yr to be the next is calculated based on Eq. (3), as in line 4. The yr
that has the highest probability (farthest distance) from the defined
centroids is selected to be the next centroid. The core idea in K-means++

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

6

is to select centroids one-by-one in a controlled fashion, where the set of
initialised centroids bias the choice of the next centroid stochastically, as
K-means++ tries to select from the far-away specified clusters’
centroids.

E(yr) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ci − yr)
2

√

(2)

In the above,
ci is the centroid of the ith cluster;
yr is the RPV of the rth requirement in the set Y; and
E(yr) is the distance yr to the nearest cluster centroid ci.

P(yr) =
E(yr)

2

∑
y∈ Y E(y)2 (3)

Here,
yr is the RPV of the rth requirement in the set Y;
E(yr) is the distance from yr to the nearest cluster centroid ci; and
P(yr) is the probability of selecting yr to be the next centroid.
After obtaining the three initial clusters’ centroids, the K-means al-

gorithm executes the process of clustering, as shown in lines 6–10 of
Fig. 3. In line 7, the distance from y to each defined centroid ci is
computed using the Euclidean distance in Eq. (4). Based on the distance
calculation, each yr is grouped to the cluster with nearest centroid, as
shown in line 8. In line 9, each defined cluster centroid ci is recalculated
by taking the average of all of its assigned yr values using Eq. (5). The
steps in lines 7 to 9 are repeatedly executed until there will no further
changes in the cluster centroid assignments. Then, the final clustering is
presented by clustering the requirements into three clusters with respect
to their RP values. With the use of the K-means++ initialisation mech-
anism for the centroids, K-means is able to produce an accurate
requirement clustering result with fewer iterations, as the K-means++

mechanism has been proven to enhance the performance of K-means in
terms of accuracy and speed [43].

Eir =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(ci − yr)
2

√

(4)

In the above,
ci is the centroid of the ith cluster;
Eir is the distance yr to the ith cluster centroid;

yr is the RPV of the rth requirement that belongs to the ith cluster
centroid ci; and

mi is the number of all assigned yr values in the ith cluster centroid ci.

ci =
1
mi

∑

yr∈ci

yr (5)

Here,
ci is the centroid of the ith cluster;
yr is the RPV of the rth requirement that belongs to ith cluster

centroid ci; and
mi is the number of all of the assigned yr values in the ith cluster

centroid ci.

3.2.3. Applying the binary search tree
Several methods are used to sort the requirements, such as binary

priority List, BST, bubble sort, spanning tree matrix and AHP. The BST
has better effectiveness in dealing with a large number of data that need
to be sorted in a ranked list with fewer comparisons. This advantage
leads to less time consumption compared with alternative methods such
as the bubble sort, binary priority list, spanning tree matrix and AHP, as
proven in mathematical complexity analysis and empirical experimental
comparison documented in [13, 17, 24, 47]. The complexity of the total
number of BST comparisons is O(log n) in the best case, where the BST is
balanced, and O(n Log n) in the unbalanced BST, where n is the number
of requirements [13, 17, 24, 47]. Meanwhile, the total number of
comparisons using AHP or bubble sort is equivalent to (n * (n-1)/2),
which is technically difficult to implement and consumes considerable
time [13, 17, 24, 47]. However, a drawback of using the BST in RP is a
simplified ranking of requirements (without revealing to what extent
each requirement is more essential than another), as no priority value is
assigned to each requirement [5,13]. In SRPTackle, the priority value of
each requirement ‘RPV’ is obtained from the previous steps of the
technique. Thus, the BST is selected to rank the requirements in each
cluster. Fig. 4 illustrates the pseudocode of the BST algorithm, which
presents the application steps of the BST for producing a ranked list of
requirements on the basis of their RPV.

The BST is executed first on the requirements in the high cluster
category to produce a ranked list of requirements to be implemented in

Fig. 3. Clustering pseudo code using K-means++ and K-means.

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

7

the high cluster, as the priority of the requirements in the high cluster
are greater than those in the other two clusters (middle and low clus-
ters). This is followed by the middle cluster, which contains re-
quirements with higher priorities than those in the low cluster. The low
cluster is sorted last. The process starts with step in line 1 of Fig. 4, by
randomly selecting one requirement’s RPV as the root node. Then, the
steps from lines 4 to 25 are executed recursively, to add each re-
quirement’s RPV. Each requirement’s RPV is selected and compared to
the root node. If the requirement’s RPV is less important than the root
node, it is compared to the left subtree node value. If the requirement’s
RPV is less than the root node value, it is compared to the right subtree
value; otherwise, it is compared to the left subtree. If the node has no
subtree, the requirement’s RPV is inserted as the new leaf node.
Otherwise, the requirement’s RPV is added to the right or left of the
subtree; if it is less, then it is added to the left, and if not, it is added to
the right. This process is repeated until all requirements’ RPVs have
been compared and inserted in the BST. The steps in lines 26 to 30 show
the process for sorting the requirements in a ranked list with a
descending mode, where the sorting process is executed by traversing
through the entire BST and recursively printing the right subtree,

followed by visiting the root and then recursively printing the left
subtree.

4. SRPTackle-tool

The SRPTackle-Tool automation implementation tool is developed to
automate the prioritisation in the SRPTackle technique. The SRPTackle-
Tool is constructed in the C# programming language with a .NET
environment, HTML language for the graphical user interface (GUI), and
a Microsoft SQL Server as the database engine. Fig. 5 shows the process
of implementing the prioritisation in the SRPTackle technique using the
SRPTackle-Tool. The SRPTackle-Tool is comprised of two main com-
ponents: the GUI, and the automation engine. These two components
contain two phases: an input phase, and a process and output phase. The
details of these phases are presented as follows.

1 Phase 1, input phase: In this step, the files (in Excel format) of the list
of the requirements, initial requirements’ weighting values, and SPV
of participating stakeholders are uploaded into the GUI of the
SRPTackle-Tool, to be stored in the constructed database. The

Fig. 4. Binary search tree pseudo code.

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

8

requirements list file contains the ID and title for all requirements
that need to be prioritised. The file for the requirement weighting
values contains the weighting values of each requirement (RIWV and
RCWV), and should be provided by the stakeholders who are
involved in prioritisation process of those requirements. The SPV file
includes the SPV of participating stakeholders is calculated by
executing the process of StakeQP-AIT as described in the StakeQP
study [6].

2 Phase 2, process and output phase/Execution of the post-
prioritisation phase of the SRPTackle technique: After uploading
and storing the above-mentioned files, the SRPTackle-Tool directly
implements the steps of the post-prioritisation phase, and displays
the results via the following automated steps:
2.1 Automated calculation of the RPV for each requirement: The

SPV of participating stakeholders in RP process, RIWV, and
RCWV are extracted from the constructed database to auto-
matically calculate the RPV of each requirement. The details of
the RPV calculation were illustrated in Section 3.2.1).

2.2 Automated classification of the requirements: Based on the
specified RPV, the requirements are automatically classified into
three clusters (high, medium, low) by employing of the K-
means++ and K-means algorithms, as described distinctly in
Section 3.2.2.

2.3 Automated execution of BST: To sort and rank the order of the
requirements in each cluster and produce the prioritised list of
requirements, the BSTs are executed automatically. This step
was described in Section 3.2.3.

2.4 Presentation of the result: The prioritised list of the re-
quirements, along with their specified RPVs, are exposed on the
GUI of the SRPTackle-Tool.

5. Experimental studies

In this section, we elaborate the precise definition and design of the
experiments on the basis of the standard guidelines proposed by Wohlin
et al. [48] on how to report and document experimentations in software
engineering. Table 1 shows an overview of the design of the experi-
ments, in which the key elements of the experiments are summarised.
The following subsections will articulate in detail the reported key
elements.

5.1. Experiment definition

The experiments were motivated by the goal of evaluating the
effectiveness of SRPTackle compared with that of StakeRare [11], Lim
et al. GA [28], Saffron [27] and OSA [49]. The effectiveness of a pri-
oritisation technique represents its capability to produce rapid and ac-
curate prioritisation results. Hence, the evaluation is conducted to
measure the accuracy of results and time consumption. Correspond-
ingly, the research questions of our experimentation are as follows:

Fig. 5. Implementation structure of the SRPTackle-tool.

Table 1
Overview of the design of the experimentation.

Goal Analysing the techniques for software requirement
prioritisation: SRPTackle, StakeRare [11], Lim et al. GA [28],
Saffron [27] and optimal solution analysis (OSA) [49], with
the goal of measuring the accuracy of results and time
consumption.

Independent
variables

SRPTackle and existing RP techniques used: StakeRare, Lim
et al. GA, Saffron and OSA.

context ralic benchmark dataset: 122 requirements of ralic industrial
software project, including 49 general requirements and 73
specific requirements.

dependant
variables

accuracy and time consumption

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

9

• Research question 1 (RQ1): Are the prioritisation results produced by
SRPTackle more accurate (compared with the ground truth) than the
prioritisation results produced by StakeRare, Lim et al. GA and
Saffron techniques?

• Research question 2 (RQ2): Is SRPTackle less time-consuming than
Lim et al. GA and OSA?

5.2. Hypothesis formulation

Corresponding to the formulated research questions, the following
null hypotheses are proposed:

• H10Accuracy: The accuracy of the SRPTackle and a particular technique
(StakeRare, Lim et al. GA and Saffron) are the same.

• H20Time: SRPTackle’s time requirement to produce the prioritisation
list is the same as that required by a particular technique (Lim et al.
GA and OSA).

If the null hypothesis can be rejected with comparatively high
conviction, then an alternative hypothesis can be formulated as follows:

• H11Accuracy: The accuracy of the SRPTackle and a particular technique
(Lim et al. GA and OSA) are not the same.

• H21Time: SRPTackle’s time requirement to produce the prioritisation
list is not the same as that required by a particular technique (Lim
et al. GA and OSA).

5.3. Variables and measures

The independent variables of our experiments are SRPTackle,
whereas the alternative techniques include StakeRare [11], Lim et al. GA
[28], Saffron [27] and OSA [49]. These specific techniques are consid-
ered relevant to SRPTackle, as they were validated in terms of suitability
to the RALIC dataset, which will be used as a benchmark dataset in our
experiments. These specific techniques were evaluated using medium-
and large-size requirements as in the RALIC dataset and the same ac-
curacy measurement method (to find the accuracy result) to assess the
performance as the present study in the accuracy evaluation process. To
the best of our knowledge, the specific techniques for comparison are the
most common techniques that secured the best results published using
the RALIC benchmark dataset.

In our experiment, two dependant variables were considered: time
consumption and accuracy. These variables are commonly used in
evaluating the effectiveness of the RP technique in terms of the capa-
bility to work with large-scale data by producing a fast and accurate
prioritised list of requirements. The most frequently measured depen-
dant variables in RP are accuracy of results and time needed to perform
the prioritisation task. This can be related to the fact that a prioritisation
process applicable in commercial software development should be fast
and capable of providing accurate results [85].

Time consumption refers to the time consumed by the technique in
prioritising the requirements to produce a ranked list of requirements.
As can be observed from the constructed hypotheses and research
questions, the time consumption performance of SRPTackle is compared
with two alternative techniques (i.e. Lim et al.’s GA [28] and OSA [49])
that perform RP with less time consumption (e.g. AHP). Compared with
StakeRare and Saffron (which were not included), Lim et al.’s GA and
OSA have the same features as SRPTackle in terms of performing RP
with a supported automation tool.

As for the accuracy of the dependant variable, SRPTackle was
measured to verify its ability to produce an accurate prioritised list of
requirements in relation to other selected techniques. The stakeholders’
agreement (satisfaction or perception) method and comparison with
actual results can be used to measure the technique’s accuracy in the RP
domain. The former is related to the assessment of accuracy perfor-
mance by evaluating the produced result from the stakeholders’ point of

view, where the percentage of stakeholders’ agreements (or disagree-
ments) on the produced result are revealed. The latter is conducted by
comparing the produced result of the technique with the actual result of
the used projects’ dataset. In this research, the second method was
selected to assess the accuracy performance of SRPTackle. The used
RALIC dataset has the actual result of the RALIC project; this result is
known as the ground truth of the prioritised requirements and the
stakeholders and is built on the basis of a rigorous and systematic pro-
cess based on the stakeholders’ satisfaction or agreements. In addition,
the selected method facilitated a fair comparison with other existing
techniques that used the RALIC dataset in evaluating their performance
against the actual data (ground truth) of RALIC.

Prioritisation accuracy was measured by comparing the ranked pri-
oritised list of requirements produced by a specific technique
(SRPTackle, StakeRare, Lim et al.’s GA and Saffron) with the ground
truth list of the requirements. The accuracy of requirement prioritisation
is the degree of similarity between the prioritised list of requirements
(ranked list of the general and specific requirements) produced by a
specific technique and the prioritisation in the ground truth list. The
ground truth list presents the actual prioritised list of the RALIC re-
quirements (ranked list of the general and specific requirements), as
derived from the RALIC project documentation in [50]. The statistical
measure of the Pearson correlation coefficient was selected to determine
the degree of similarity because it is considered the best method for
measuring the association between two or more variables [51]. In
addition, it has been used by existing RP techniques for the same pur-
pose, i.e. finding the accuracy of their prioritised result [11,27]. The
value of the correlation coefficient (p) ranged between +1 and − 1,
where +1 refers to a perfect positive correlation, − 1 indicates a perfect
negative correlation, and 0 refers to no correlation. As shown in Eq. (6),
the Pearson correlation coefficient formula was used to calculate the
correlation coefficient value (p).

P =

∑n
i=1(xi − x)(yi − y)

̅̅
∑n

i=1 (xi − x)2 ∑n
i=1 (yi − y)2

√ (6)

In the above equation,
P is the Pearson correlation coefficient value (accuracy perfor-

mance);
n is the number of samples of requirements in each list (both lists

consist of the same number of requirements);
xi is the rank for requirement i in the list of SRPTackle; and
yi is the rank for requirement i in the ground truth list.

5.4. Objects

The experiments were conducted using a benchmark dataset of the
RALIC industrial software project. The RALIC benchmark dataset project
is considered a large-scale software project [22,50]. This project was
initiated and developed as a new access control system at University
College London. The documentation reports of the RALIC project are
provided in the RALIC dataset and in the thesis of Soo Lim, which can be
accessed in [11, 22, 50]. To the best of our knowledge, the RALIC
benchmark dataset is one of the first available and complete datasets in
the RP field and contains a large set of requirements that need to be
prioritised.

Compared with other datasets, the RALIC benchmark dataset con-
tains detailed information on numerous requirements and stakeholders
in the RALIC project. The ground truths that present the actual priority
ranks of the RALIC requirements, can be used to evaluate performance
accuracy. Hence, the RALIC dataset has been used to evaluate some
existing RP techniques, as in [11, 27, 28]. On this basis, the RALIC
dataset was used in this study to evaluate SRPTackle and achieve a fair
performance comparison between SRPTackle and existing RP tech-
niques. A list of 122 requirements is provided in the truth table of the
RALIC requirements, and it presents the actual results of the

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

10

prioritisation of the requirements [11,50]. These requirements were
categorised as general and specific requirements, where each general
requirement may have its own specific requirements. A total of 49
general and 73 specific requirements was noted. In this research, the
medium and large requirement sets of the RALIC dataset were used to
evaluate the performance of SRPTackle.

5.5. Subjects

A total of 127 individuals were reported as stakeholders of the RALIC
project [11]. However, as stated in the documentation reports of the
RALIC benchmark dataset project, 87 stakeholders were identified to be
involved in the prioritisation process of the RALIC requirements by
providing initial rating value for system requirements [11, 22, 50]. The
full details of the stakeholders’ profiles and the requirements’ ratings
from each participating stakeholder are reported in the documentation
reports of the RALIC project, which can be obtained in [11, 22, 50]. To
conduct a systematic and fair performance evaluation and comparison
amongst SRPTackle, StakeRare, Lim et al.’s GA, Saffron and OSA, the
experiments were conducted with considering the participation of the
same 87 stakeholders whose profiles and requirements’ ratings were
considered in the prioritization process of the conducted experiments in
this study.

5.6. Experiment execution

As shown in Table 2, seven experiments were conducted using the
RALIC requirements. The experiments aimed for a systematic and fair
performance evaluation and comparison amongst SRPTackle, Stake-
Rare, Lim et al.’s GA, Saffron and OSA. These experiments were
executed separately, and each experiment implemented the proposed
SRPTackle technique on the basis of the defined steps of SRPTackle-
Tool, which was presented in Section 4. Each experiment was con-
ducted within a specific objective and used a certain size of requirement
set of the RALIC dataset.

Exp. 1 and Exp. 5 were conducted to compare the performance of
SRPTackle with that of StakeRare, Lim et al.’s GA and OSA. The
experimental procedure of this experiment follows that of [11, 28, 49] to
achieve a fair comparison with the reported results. Exp. 1 was executed
using a medium set of requirements (containing 49 general re-
quirements), which is the same size of requirements used in assessing
StakeRare, Lim et al.’s GA and OSA. By contrast, Exp. 5 was imple-
mented with the same number of RALIC requirements (large set of re-
quirements, including all of the specific requirements) used in
evaluating the performance of StakeRare and Lim et al.’s GA. For Lim
et al.’s GA, experiments were conducted with different initialisation

values for the GA used in the prioritisation process. However, we
selected the best-reported result of Lim et al.’s GA for comparison with
the proposed SRPTackle.

Furthermore, Exp. 2, Exp. 3 and Exp. 4 were performed to evaluate
SRPTackle and compare its accuracy results with the Saffron technique.
These experiments were conducted on the basis of the experimental
procedure in [27] to obtain a fair comparison with the results of the
Saffron technique published therein. In this manner, Exp. 2, Exp. 3 and
Exp. 4 were implemented with large sets of requirements, consisting of
50, 59 and 65 requirements, respectively. By contrast, the aim of con-
structing Exp. 6 is to assess SRPTackle’s performance in comparison
with that of Saffron and OSA. Hence, to ensure a fair comparison, Exp. 6
was implemented in accordance with the experimental procedure in [27,
49]. Correspondingly, Exp. 6 was implemented to prioritise 80 general
requirements and their specific requirements. Eventually, in accordance
with the experimental procedure in [11], Exp. 7 was executed to assess
the performance of SRPTackle and compared it with that of StakeRare
using a large set of requirements, including the complete list of 122
requirements (i.e. 49 general requirements and their 73 specific
requirements).

6. Experimental results

In this section, we analyse and summarise the results obtained from
the conducted experiments to answer the research questions presented
in Section 5.1. We performed statistical analysis using SPSS 22 [52] to
test the stated hypotheses. A two-tailed one-sample t-test was used to
test the defined hypotheses. Considered to be the most recommended
significance level by researchers and scientists [12,53], 5% (0.05) sta-
tistical significance level (P) was set for hypothesis testing. The selection
criteria of 5% (0.05) significance level are presented in Table 3.

6.1. RQ1: are the prioritisation results produced by SRPTackle more
accurate (compared with the ground truth) than the prioritisation results
produced by stakerare, Lim et al.’s GA and saffron?

Table 4 presents a comparison of the accuracy results from
SRPTackle with those from three alternative techniques (StakeRare, Lim
et al.’s GA and Saffron) for each conducted experiment; the Pearson
correlation coefficient was used, as described in Section 5.3. In Exp.1
and Exp.5, the accuracy performance of SRPTackle is compared with
that from StakeRare and Lim et al.’s GA. The accuracy performance of
these two techniques was evaluated with the same number of RALIC
requirements as stated in Section 5.5.

The accuracy results in Exp. 1 and Exp. 5 (as depicted in Table 4)
reveal that the proposed SRPTackle has better accuracy performance
than the other two techniques. For Exp. 1 and Exp. 5, the accuracy re-
sults of SRPTackle are 0.9465 and 0.9371, respectively; those for
StakeRare are 0.50 and 0.71, respectively; those for Lim et al.’s GA are
0.9228 and 0.9135, respectively. The accuracy performance of
SRPTackle was also compared with the Saffron technique, using the
same number of requirements as in Exp. 2, 3, 4 and 6 for SRPTackle, as
described in Section 5.5. The efficiency of SRPTackle is higher than that
of the existing technique; the accuracy results for SRPTackle are 0.9399,
0.9381, 0.93 and 0.9392 for Exp. 2, Exp. 3, Exp. 4 and Exp. 6, respec-
tively, whereas those for Saffron are 0.9231, 0.8156, 0.7669 and 0.7669,
respectively.

Table 5 presents the statistical results of the t-test of the SRPTackle in
comparison with each specific technique (StakeRare, Lim et al.’s GA,

Table 2
Experimental details.

Experiment No Size of
requirement set

Number of
requirements

RALIC requirement types

Experiment 1
(Exp. 1)

Medium 49 General requirements

Experiment 2
(Exp. 2)

Large 50 Specific requirements

Experiment 3
(Exp. 3)

Large 65 Specific requirements

Experiment 4
(Exp. 4)

Large 70 Specific requirements

Experiment 5
(Exp. 5)

Large 73 Specific requirements

Experiment 6
(Exp. 6)

Large 80 General requirements
and their specific
requirements

Experiment 7
(Exp. 7)

Large 122 General requirements
and their specific
requirements

Table 3
Selection criteria.

P-value Criteria Result

p < 0.05 Reject null hypothesis
p ≥ 0.05 Do not reject null hypothesis

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

11

Saffron) based on the accuracy results of conducted experiments in
Table 4. As shown in Table 5, the obtained P values of SRPTackle and
specific techniques are less than the 0.05 significance level. Thus, we can
conclude that the first null hypothesis (H10Accuracy) is rejected at a sig-
nificance level of 0.05, and the accuracy of SRPTackle is significantly
higher than that of StakeRare, Lim et al.’s GA and Saffron.

Additionally, Fig. 6 depicts the average improvement percentages of
SRPTackle relative to each of the selected techniques, with respect to the
accuracy performance. In measuring the average accuracy improvement
percentages, the accuracy improvement percentage is firstly measured
on the basis of the obtained experimental accuracy results of each
technique in each experiment, as presented in Table 4. Eq. (7), which is
well-known for measuring the improvement percentage of performance
testing for a technique [15, 54–56], was used to calculate the accuracy
improvement percentages.

AIPi,j =
PTj − ETi,j

ETi,j
× 100 (7)

In the above equation,
AIPi,j is the accuracy percentage improvement of the SRPT technique

against the ith specific technique in the jth experiment;
PTj is the accuracy result of the proposed SRPTackle technique in the

jth experiment; and
ETi,j is the accuracy result of the ith specific technique in the jth

experiment.
Subsequently, the average accuracy improvement of SRPTackle with

respect to each of the specific technique on all experiments was calcu-
lated, as illustrated in Fig. 6. The accuracy efficiency of SRPTackle is
2.58%, 59.16% and 19.28% better than that of StakeRare, Lim et al.’s
GA and Saffron, respectively. Additionally, the overall average perfor-
mance of SRPTackle against all selected techniques demonstrates that
the accuracy performance of SPRTackle is generally better than that of
StakeRare, Lim et al.’s GA and Saffron in terms of accuracy at a per-
centage of 27.01%.

6.2. RQ2: is SRPTackle less time consuming than Lim et al.’s GA and
OSA?

Fig. 7 presents a comparative time consumption performance of
SRPTackle and two alternative techniques (Lim et al.’s GA and OSA) for
producing the final prioritised list of requirements. In particular, the
time consumption of SRPTackle is 5.02 s to prioritise 49 requirements of
Exp. 1, whereas those for OSA and Lim et al.’s GA are 25.89 and 200 s,
respectively. For Exp. 5, SRPTackle consumes 5.48 s, whereas Lim
et al.’s GA consumes 200 s. For Exp. 6, the time consumption of
SRPTackle is 5.52 s, whereas that for OSA is 40.64 s. As shown in Fig. 7,
the performance of SRPTackle is more effective than that of the other
two techniques, insofar as consuming less time for prioritising the me-
dium and large sets of requirements.

We applied t-test to test the second null hypothesis (H20Time). Table 6
depicts the t–test results based on the time consumption results of the
conducted experiments (Fig. 7). The t-test’s results in Table 6 demon-
strate that the hypothesis H20Time should be rejected at a 0.05 signifi-
cance level because the obtained P-values are less than a 0.05
significance level. The results also reveal that on the average, SRPTackle
requires less time than Lim et al.’s GA and OSA. Hence, the statistical
analyses evidently demonstrate that SRPTackle is a faster technique in
performing prioritisation task than Lim et al.’s GA and OSA.

7. Discussion

Throughout this section, the potential phenomena that could artic-
ulate the trends achieved in the experiments’ analysis and comparisons
are distinctly discussed, and the base of the proposed SRPTackle tech-
nique is clarified.

Table 4
Accuracy results produced by SRPTackle, StakeRare Lim et al.’s GA and saffron.

Experiment Technique Accuracy Result

Exp. 1 StakeRare 0.50
Lim et al.’s GA 0.9228
SRPTackle 0.9465

Exp. 2 Saffron 0.923
SRPTackle 0.9399

Exp. 3 Saffron 0.8156
SRPTackle 0.9381

Exp. 4 Saffron 0.7669
SRPTackle 0.93

Exp. 6 Saffron 0.6756
SRPTackle 0.9392

Exp. 5 StakeRare 0.71
Lim et al.’s GA 0.9135
SRPTackle 0.9371

Exp. 7 StakeRare 0.6050
SRPTackle 0.9449

Table 5
Results of t-tests for accuracy.

Technique Mean Std. Deviation P-value

StakeRare 0.6050 0.1050 0.010
SRPTackle 0.9428 0.0050 0.000
Lim et al. GA 0.9185 0.0064 0.003
SRPTackle 0.9418 0.0066 0.003
Saffron 0.7953 0.1031 0.001
SRPTackle 0.9364 0.0043 0.000

Fig. 6. Overall improvement percentages.

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

12

In terms of accuracy performance, the statistical analyses of the
experimental results demonstrate that the accuracy of SRPTacle is better
than that of StakeRare, Lim et al.’s GA and Saffron. This result can be
attributed to the fact that SRPTackle is comprehensive, and it minimises
the risk caused by a lack of experience. In SRPTackle, the formulation of
the RPV led to not being excessively dependant on experts for identi-
fying the RPV values of the requirements. The RPV formulation is con-
structed by applying the WSM method on the basis of the input
requirement weights given by the stakeholders and the specified SPV of
stakeholders by StakeQP. In contrast to existing techniques, the SPV of
each participating stakeholder in the RP process is considered and
executed in SRPTackle via the new SQP technique. The quantification
and prioritisation of the participating stakeholders using StakeQP fa-
cilitates the identification of an accurate a stakeholder’s influence (SPV
of each participating stakeholder) because StakeQP provides the ability
to identify an accurate list of SPVs for the stakeholders whilst mini-
mising the need for expert participation in measuring the SPV, as vali-
dated in [6]. Then, the identified SPVs of the stakeholders are used in
specifying the RPV of each requirement. Thus, measuring the influence
of each stakeholder amongst the participating stakeholders accurately
contributes to generate the accurately prioritised list of requirements in
comparison with StakeRare, Lim et al.’s GA and Saffron. Consequently,
SRPTackle can conduct the RP process whilst evaluating the influence of
the various types of involved stakeholders in RP, in which the stake-
holders have different influences on the success of development projects
and have limited and competing resources. In this regard, classifying the
requirements and producing the prioritised list thereof on the basis of
the identified RPVs via the clustering algorithm (K-means and
K-means++), along with the BST, allows the SRPTackle technique to
function without being heavily reliant on expert intervention in
assigning the RPV for each requirement or in classifying, prioritising and
generating the ranked list of requirements. By contrast, the RP processes
of existing RP techniques depend too heavily on the involvement of
professional expertise and require deep knowledge to initiate the pro-
cess, thus negatively influencing the reliability of the techniques in
producing accurate results due to the bias induced by the judgement of
the expert in making various decisions and cases where expertise is
deficient [5, 6, 15].

The experimental results show that the efficiency of SRPTackle is
superior to Lim et al.’s GA and OSA in terms of the time consumption for
producing the prioritised list of requirements. This observation is true
even though some of these techniques are implemented with semi-
automated execution types. This phenomenon could be attributed to the
semiautomated process that was adopted herein to conduct the RP
process with the use of the developed automation tool (SRPTackle-Tool).
Executing the process of the SRPTackle technique with the automation
SRPTackle-tool facilitates the automatic prioritisation, i.e. eliminating
the manual process. Additionally, the ability of StakeQP to perform the
SQP process for participating stakeholders with less time consumption
reduces the time consumption for quantifying and prioritising the
stakeholders in the prioritisation process of the SRPTackle. By contrast,
Lim et al.’s GA and OSA heavily rely on professional expertise in con-
ducting the SQP process by specifying the SPV values of stakeholders on
the basis of the manual inputs of the experts. Moreover, the utilisation of
the speed features of the clustering algorithms in categorising and pri-
oritising the requirements minimises the time required to produce a
ranked list of requirements in comparison with Lim et al.’s GA and OSA.
These latter techniques perform pairwise comparisons and/or rely on
experts to perform the process, thus consuming a considerable amount
of time. Therefore, SRPTackle requires less time than either Lim et al.’s
GA or OSA.

Furthermore, certain factors, such as the number of comparisons,
time, lack of automation and overreliance on expert involvement, play
key roles in the scalability issue for most existing techniques [5, 13, 17].
For instance, in various RP techniques, such as the bubble sort, AHP and
pairwise comparison, the prioritisation process is conducted by evalu-
ating the relative priorities between pairs of requirements [5, 13, 24].
The number of comparisons increases dramatically as the number of
requirements increases, making the prioritisation process highly com-
plex and tiring. Consequently, the scalability of the prioritisation process
is affected [10, 13, 24]. Additionally, a manual process with heavy
reliance on experts to perform the process and the calculations to
identify the relative priority value of each requirement can be complex
and time consuming [13, 17, 57]. Hence, having to manage hundreds of
requirements makes these RP techniques unmanageable [5, 13, 17]. In
addition, when conducting an RP process, a scalable RP technique
should work with a large set of requirements without consuming
considerable amount of time and producing accurate results [58]. In
SRPTackle, the combination of the RPV formulation function, K-means,
K-means++, BST and the developed automation tool addresses the lack
of scalability to a good extent. In particular, the results illustrate the
ability of this technique to handle a large set of requirements efficiently,
i.e. with reduced time consumption and improved accuracy in com-
parison with other existing scalable techniques. The RPV formulation is
used to calculate the priority value of each requirement using the WSM

Fig. 7. Time Consumption performance of SRPTackle, Lim et al.’s GA and OSA for producing the final prioritised list of requirements.

Table 6
Results of t-tests for time consumption.

Technique Mean Std. Deviation P-value

Lim et al.GA 210.00 14.1421 0.030
SRPTackle 5.25 0.3252 0.028
OSA 33.265 10.4298 0.139
SRPTackle 5.27 0.3535 0.030

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

13

method based on the input requirement weights given by the stake-
holders, specified SPV of stakeholders, without performing any pairwise
comparisons in formulating the RPV. This approach is beneficial because
pairwise comparisons disrupt the effectiveness of dealing with a large set
of requirements as the number of requirements increases and raises is-
sues of complexity in terms of implementing prioritisation and time
consumption. Moreover, using the BST and clustering algorithm
(K-means++ and K-means) in SRPTackle not only reduces expert biases
by minimising the experts’ participation in generating the ranked list of
requirements but also enables SRPTackle to work with a large set of
requirements. The K-means algorithm provides the ability to cluster
numerous requirements in the RALIC dataset into three specified clus-
ters on the basis the specified RPV of each requirement; such ability is
shown in the experimentation results with K-means++ initialisation.

Additionally, the BST is used in this research for sorting re-
quirements. The effectiveness of the BST in managing numerous re-
quirements to be sorted in a prioritised list, with fewer comparisons as
compared to the AHP and bubble sort techniques, makes SRPTackle
more effective in dealing with a large set of requirements. With the use
of 122 RALIC dataset requirements in the experiment, the complexity of
the total number of comparisons for BST is O(log n) in the best case,
where the constructed BST is balanced, and O(n Log n) with an unbal-
anced BST, where n is the number of the requirements [17, 24, 59, 60].
The total number of comparisons using AHP or bubble sort is equal to (n
* (n-1)/2), which is difficult to implement practically and consumes a
considerable amount of time [15,24].

Insofar as StakeRare, OSA, Lim et al. GA, and Saffron, these tech-
niques are found to be less are found to be less time consuming and more
accurate in producing prioritisation results as compared to other tech-
niques, such as AHP. However, the statistical results of the conducted
experiments demonstrate the ability of SRPTackle to generate accurate
results with less time consumption. Moreover, SRPTackle has salient
properties in comparison with these alternative techniques in terms of
being more effective in addressing the need for substantial professional
participation in implementing the RP process; the alternative techniques
are heavily dependant on good expertise to initiate and execute the
prioritisation process of the technique.

8. Threats to validity

Experiment-based research is often subject to different types of val-
idity threats (i.e. conclusion, internal, construct and external validity)
[48]. In this research, we attempted to minimise and eliminate these
threats as much as possible; however, a few of these threats are beyond
our control.

External threats: Threats to external validity rise when experiments
cannot be generalised to various forms of real-world problems. The
threat here is that we cannot guarantee that the used benchmark con-
stitutes all types of real-world applications in software development
sectors. To repress this threat, we select a benchmark dataset of an actual
large software project (RALIC), which is a well-known benchmark
dataset in the RP domain. To the best of our knowledge, the benchmark
dataset of RALIC is one of the realistic, available and complete datasets
in RP and SQP domains; it includes detailed information of numerous
requirements and stakeholders of the RALIC project. Thus, the RALIC
benchmark dataset is commonly utilised for evaluations and selected
from real developed software system projects that are initiated and
developed as new access control system at University College London.
However, SRPTackle should be tested in additional industrial projects
that are related to the different types of software project practices to
enhance external validity.

Internal threats: Threats to internal validity relates to factors which
affect experiments without our awareness and/or which are beyond our
control. One threat to internal validity comes from the measurement of
time consumption for prioritising the requirements for each technique;
such measurement is highly subjective to the running environment.

Thus, the implementation of all techniques must be conducted in the
same prioritisation environment. To minimise this threat, we compared
the time consumption performance of SRPTackle with the tools of the
three techniques evaluated with the RALIC dataset and with the same
number of requirements as the present study. The comparison could
present an indication for prioritisation time; however, another threat
here is related to the implementation of language differences in the
techniques’ tools. In addition, although the performance of these tech-
niques’ tools can be influenced by the specifications of the machine (e.g.
desktop or laptop) used to run the tools, the execution of the tools
compared herein were conducted on a machine with specifications
defined by the authors to be the minimum specifications required to
execute the tools efficiently.

Construct validity: Construct validity threats are related to the
application–theory relationship. One of the construct validity threats
arises from automation process issues. The automation process,
although timesaving and with minimal to no human intervention, may
elicit an issue of producing an unpredictable processing error or a low-
quality result in case the implementer has not followed the process
implementation structure of SRPTackle. The reason is that the auto-
mated machine cannot execute a flexible variety of tasks because it is
restricted to execute the task on the basis of what it has been pro-
grammed to do. Similarly, the automation process of SRPTackle is
implemented in the full process of prioritising the requirements on the
basis of the defined criteria that are used to obtain RIWV and RCWV, and
the specified SPV of the participating stakeholder. Hence, the SRPTackle
automation process has the capability of completing the process
accordingly if the RIWV, RCWV, and the SPV have been upload on the
basis of the stated process implementation structure of the SRPTackle.
To reduce this threat, the full process of the SRPTackle is distinctly
elaborated to assist the implementer in obtaining the SPV, RIWV and
RCWV on the basis of the defined criteria. Thus, the implementer is
recommended to read the given elucidation of the SRPTackle imple-
mentation process judiciously. Another threat here is related to the
unforeseen costs that would be needed to keep the SRPTackle-tool’s
processes up to date because the costs disbursed in upgrading with a new
protocol would entail high operating costs in relation to the research and
development that needs to be conducted.

Conclusion validity: Conclusion threats involve the relationship be-
tween the treatment and the outcome. The threats here are related to the
conducted comparison with existing RP techniques. Within RP, various
techniques are compared. However, we were unable to compare our
approach with all these techniques due to different reasons, such as the
unavailability of the source code of these techniques for public use. To
mitigate this threat, we compared the performance of the proposed
SRPTackle technique with those techniques considered to be the most
relevant to SRPTackle, as these selected techniques were evaluated
using the RALIC dataset with the same size of requirements and the same
accuracy measurement method as the present study. Moreover, these
compared techniques execute their own SQP processes during the pri-
oritisation of requirements similar to SRPTackle. To the best of our
knowledge, the above-mentioned techniques and benchmarks for com-
parison are the best results published so far using the RALIC benchmark
dataset.

9. SRPTackle Managerial contributions

Based on the performance evaluations, it is evident that SRPTackle
can introduce a number of contributions to the managerial side in the
development process of software system projects. SRPTackle is one of
the first techniques to conduct the RP process without being exceedingly
reliant on the participation of human expertise. By using the clear
implementation details from the constructed RPV formulation function
for specifying the RPV of each requirement, the classification algorithm
using K-means and K-means++, and the BST for classifying and priori-
tising the requirements, a project manager can produce a prioritised list

F. Hujainah et al.

Information and Software Technology 131 (2021) 106501

14

of requirements with minimal expert participation. Thus, SRPTackle can
enable the project manager to minimise cost expenses in project devel-
opment that are typically required, e.g. contracting an expert to initiate
and execute the RP process.

Additionally, as SRPTackle can generate more accurate prioritisation
results than the alternative techniques insofar as producing a prioritised
list of requirements with classification levels and RPV values for large-
scale projects, the project manager can determine highly important re-
quirements that need to be implemented early in the project develop-
ment process. This will consequently assist the project manager in
optimising the usage of limited resources effectively during the devel-
opment process, and in constructing an effective plan for the financial
implications, requirements, and staged deliveries. This allows for the
expansion of projects and excellent outputs, increasing the likelihood of
securing a successful system project.

Furthermore, with the SRPTackle features of time effectiveness, the
ability to scale well with a large number of requirements, automation,
and clear implementation guidelines, the project manager can perform
the RP process for projects with large-scale requirements in a profes-
sional and proper manner, without necessitating an extensive amount of
effort (e.g. time workloads, tiring tedious manual processes, the need for
the involvement of professional expertise, computational complexity,
and likelihood of human errors). Eventually, with the presence of the
SRPTackle technique and its automation tools, the development process
of a software system project will possess a lower likelihood of failure
from shortcomings, such as a shortage of expertise, an omission of
important requirements, biased results of the RP, and limited constraints
(e.g. time and budget constraints).

10. Conclusion and future directions

In this research, a new semi-automated RP technique (SRPTackle)
and automation implementation tool (SRPTackle-Tool) were proposed
to address challenges in existing RP techniques, such as scalability,
excessive reliance on expert intervention, time consumption, a lack of
automation, and a lack of a SQP process for evaluating the stakeholder
impact in prioritising the requirements. The proposed SRPTackle pro-
vides a semi-automated process for prioritising a large set of re-
quirements without a manual process, while minimising the need for
expert intervention in assigning the priority values to requirements,
classifying the requirements, conducting the SQP process, and produc-
ing a ranked list of requirements. The proposed SRPTackle technique is
based on a combination of the RPV formulation function using the WSM
method, clustering algorithms (K-means and K-means++), and the BST.
The WSM method utilised to specify the RPV value of each requirement
is based on the defined SPV of each stakeholder and the assigned initial
weight value of the requirement that is obtained from the participating
stakeholders. To classify the requirements into three defined levels
(high, medium, and low), the K-means and K-means++ algorithms were
employed to classify the requirements based on their specified RPVs.
Lastly, the BST algorithm was employed to sort the requirements, and
produce the prioritised list of requirements. Seven experiments were
conducted to assess the performance of SRPTackle with medium and
large sets of requirements from the RALIC benchmark dataset. The
findings demonstrate that SRPTackle can handle a large set of re-
quirements and produce results that are more accurate in less time, and
is more effective in addressing the defined RP limitations as compared to
the other existing RP techniques.

Through the conducted experiments and comprehensive literature
exploration in this research, several limitations have been revealed,
leading to future trends that can be suggested to extend this research. A
potential future trend for improving SRPTackle performance is catering
to the independencies of the requirements. Handling requirement in-
terdependencies is another important consideration in RP [5, 13, 23].
The proposed SRPTackle assumes that all the requirements are inde-
pendent and places concerns regarding interdependencies as future

work. Moreover, as revealed herein, most existing RP techniques fail to
address requirement interdependencies. Thus, the SRPTackle technique
is recommended to handle the dependencies amongst requirements
automatically, especially with a large set of requirements.

Other future trends can focus on extending the implications of
SRPTackle to different project datasets. In this research, SRPTackle was
applied to the RALIC benchmark dataset, which is from a large actual
software project. However, with limited resources and other constraints
in accessing other benchmark datasets in the RP and SQP domains, we
did not apply the proposed SRPTackle technique to other project data-
sets. Thus, we suggest expanding the implications of SRPTackle to
different datasets of software projects. Additionally, the implications of
the proposed technique in various global software project practices are
desirable for improved applicability due to the encouraging evaluation
results obtained herein.

CRediT authorship contribution statement

Fadhl Hujainah: Methodology, Investigation, Conceptualization,
Writing - original draft, Software, Writing - review & editing, Validation,
Formal analysis. Rohani Binti Abu Bakar: Conceptualization, Re-
sources, Funding acquisition. Abdullah B. Nasser: Resources, Funding
acquisition, Visualization. Basheer Al-haimi: Formal analysis, Visuali-
zation, Data curation. Kamal Z. Zamli: Validation, Writing - review &
editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

The authors appreciate the efforts of the Ministry of Education
Malaysia, Universiti Malaysia Pahang (UMP) and Ministry of Higher
Education Yemen for supporting this research. This work is supported in
part by the Fundamental Research Grant from the Ministry of Education
Malaysia under Grants: RDU1901209 FRGS/1/2019/ICT02/UMP/02/
13, RDU190164, and the PGRS170393 Grant from UMP. The authors
also give special thanks to Professor Soo Ling Lim for her kind support in
providing the benchmark dataset for this work.

Reference

[1] F. Gomariz-Castillo, I. Garrigós, J.-A. Aguilar, J. Zubcoff, S. Casteleyn, J.-N. Mazón,
Evaluating different i*-based approaches for selecting functional requirements
while balancing and optimizing non-functional requirements: a controlled
experiment, Inf. Softw. Technol. 106 (2019) 68–84, https://doi.org/10.1016/j.
infsof.2018.09.004.

[2] J. Medeiros, A. Vasconcelos, C. Silva, M. Goulão, Requirements specification for
developers in agile projects: evaluation by two industrial case studies, Inf. Softw.
Technol. 117 (2020), https://doi.org/10.1016/j.infsof.2019.106194.

[3] F.A. Bukhsh, Z.A. Bukhsh, M. Daneva, A systematic literature review on
requirement prioritization techniques and their empirical evaluation, Comput.
Stand. Interfaces. (2020), 103389, https://doi.org/10.1016/j.csi.2019.103389.

[4] R.C. Motta, K.M. de Oliveira, G.H. Travassos, A conceptual perspective on
interoperability in context-aware software systems, Inf. Softw. Technol. 114 (2019)
231–257, https://doi.org/10.1016/j.infsof.2019.07.001.

[5] F. Hujainah, R.B.A. Bakar, M.A. Abdulgabber, K.Z. Zamli, Software requirements
prioritisation: a systematic literature review on significance, stakeholders,
techniques and challenges, IEEE Access 6 (2018) 71497–71523, https://doi.org/
10.1109/ACCESS.2018.2881755.

[6] F. Hujainah, R.B.A. Bakar, M.A. Abdulgabber, StakeQP: a semi-automated
stakeholder quantification and prioritisation technique for requirement selection in
software system projects, Decis. Support Syst. 121 (2019) 94–108, https://doi.org/
10.1016/j.dss.2019.04.009.

[7] F. Sher, D.N.A. Jawawi, R. Mohammad, Requirements prioritization aspects
quantification for value-based software developments, J. Theor. Appl. Inf. Technol.
97 (2019) 3969–3979.

F. Hujainah et al.

https://doi.org/10.1016/j.infsof.2018.09.004
https://doi.org/10.1016/j.infsof.2018.09.004
https://doi.org/10.1016/j.infsof.2019.106194
https://doi.org/10.1016/j.csi.2019.103389
https://doi.org/10.1016/j.infsof.2019.07.001
https://doi.org/10.1109/ACCESS.2018.2881755
https://doi.org/10.1109/ACCESS.2018.2881755
https://doi.org/10.1016/j.dss.2019.04.009
https://doi.org/10.1016/j.dss.2019.04.009
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0007
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0007

Information and Software Technology 131 (2021) 106501

15

[8] L. Alawneh, Requirements prioritization using hierarchical dependencies, in:
S. Latifi (Ed.), Inf. Technol. - New Gener., Springer International Publishing, Cham,
2018, pp. 459–464.

[9] H. Tufail, I. Qasim, M.F. Masood, S. Tanvir, W.H. Butt, Towards the selection of
optimum requirements prioritization technique: a comparative analysis, in: 5th Int.
Conf. Inf. Manag. ICIM 2019, 2019, pp. 227–231, https://doi.org/10.1109/
INFOMAN.2019.8714709.

[10] I. Ibriwesh, S.-.B. Ho, I. Chai, Overcoming scalability issues in analytic hierarchy
process with ReDCCahp: an empirical investigation, Arab. J. Sci. Eng. (2018) 1–17,
https://doi.org/10.1007/s13369-018-3283-2.

[11] S.L. Lim, A. Finkelstein, StakeRare : using social networks and collaborative
filtering for large-scale requirements eliciation, IEEE Trans. Softw. Eng. 38 (2012)
707–735.

[12] F. Shao, R. Peng, H. Lai, B. Wang, DRank: a semi-automated requirements
prioritization method based on preferences and dependencies, J. Syst. Softw. 126
(2017) 141–156, https://doi.org/10.1016/j.jss.2016.09.043.

[13] P. Achimugu, A. Selamat, R. Ibrahim, M.N. Mahrin, A systematic literature review
of software requirements prioritization research, Inf. Softw. Technol. 56 (2014)
568–585, https://doi.org/10.1016/j.infsof.2014.02.001.

[14] M. Sufian, Z. Khan, S. Rehman, W. Haider Butt, A systematic literature review:
software requirements prioritization techniques, in: Proc. - 2018 Int. Conf. Front.
Inf. Technol. FIT 2018, IEEE, 2019, pp. 35–40, https://doi.org/10.1109/
FIT.2018.00014.

[15] M.I. Babar, M. Ghazali, D.N. a. Jawawi, S.M. Shamsuddin, N. Ibrahim, PHandler:
an expert system for a scalable software requirements prioritization process,
Knowl.-Based Syst. 84 (2015) 179–202, https://doi.org/10.1016/j.
knosys.2015.04.010.

[16] M. Aasem, M. Ramzan, A. Jaffar, Analysis and optimization of software
requirements prioritization techniques, in: Int. Conf. Inf. Emerg. Technol., 2010,
pp. 1–6, https://doi.org/10.1109/ICIET.2010.5625687.

[17] Q. Ma, The effectiveness of requirements prioritization techniques for a medium to
large number of requirements : a systematic literature review, Master’s Thesis,
School of Computing and Mathematical Sciences, Auckland University of
Technology, Auckland, New Zealand, 2009.

[18] F. Hujainah, R.B. Abu Bakar, B. Al-haimi, M.A. Abdulgabber, Stakeholder
quantification and prioritisation research: a systematic literature review, Inf.
Softw. Technol. 102 (2018) 85–99, https://doi.org/10.1016/j.infsof.2018.05.008.

[19] S... Forouzani, R... Ahmad, S... Forouzani, N... Gazerani, Design of a teaching
framework for software requirement prioritization, in: Proc. - 2012 8th Int. Conf.
Comput. Technol. Inf. Manag. ICCM 2012, 2012, pp. 787–793. http://www.scopus.
com/inward/record.url?eid=2-s2.0-84867025210&partnerID=40&md5=3479
40a3a8a79a5eb31fb427897ced76.

[20] M.I. Babar, M. Ghazali, D.N.A. Jawawi, K. Bin Zaheer, StakeMeter: value-based
stakeholder identification and quantification framework for value-based software
systems, PLoS ONE 10 (2015) 1–33, https://doi.org/10.1371/journal.
pone.0121344.

[21] F. Hujainah, R.B.A. Bakar, B. Al-Haimi, M.A. Abdulgabber, Investigation of
stakeholder analysis in requirement prioritization techniques, Adv. Sci. Lett. 24
(2018) 7227–7231.

[22] S.L. Lim, D. Quercia, A. Finkelstein, StakeNet: using social networks to analyse the
stakeholders of large-scale software projects, in: Proc. 32nd ACM/IEEE Int. Conf.
Softw. Eng. - ICSE ’10, 2010, pp. 295–304, https://doi.org/10.1145/
1806799.1806844.

[23] F. Hujainah, R.B.A. Bakar, M.A. Abdulgabber, Investigation of requirements
interdependencies in existing techniques of requirements prioritization, Teh. Vjesn.
26 (2019) 1186–1190, https://doi.org/10.17559/TV-20171129125407.

[24] J. Karlsson, C. Wohlin, B. Regnell, An evaluation of methods for prioritizing
software requirements, Inf. Softw. Technol. 39 (1998) 939–947, https://doi.org/
10.1016/S0950-5849(97)00053-0.

[25] A. Perini, A. Susi, P. Avesani, A machine learning approach to software
requirements prioritization, IEEE Trans. Softw. Eng. 39 (2013) 445–461, https://
doi.org/10.1109/TSE.2012.52.

[26] P. Tonella, A. Susi, F. Palma, Interactive requirements prioritization using a genetic
algorithm, Inf. Softw. Technol. 55 (2013) 173–187, https://doi.org/10.1016/j.
infsof.2012.07.003.

[27] S.A. Asif, Z. Masud, R. Easmin, A.U. Gias, SAFFRON : a semi-automated framework
for software requirements prioritization, Int. J. Adv. Comput. Sci. Appl. 8 (2017)
491–499.

[28] S. Lim, M. Harman, A. Susi, Using genetic algorithms to search for key stakeholders
in large-scale software projects, in: Aligning Enterp. Syst. Softw. Archit., 2012,
pp. 118–134, https://doi.org/10.4018/978-1-4666-2199-2.ch007.

[29] A. Hudaib, R. Masadeh, A. Alzaqebah, WGW: a hybrid approach based on whale
and grey wolf optimization algorithms for requirements prioritization, Adv. Syst.
Sci. Appl. 18 (2018) 63–83, https://doi.org/10.25728/assa.2018.18.2.576.

[30] R. Qaddoura, A. Abu-Srhan, M.H. Qasem, A. Hudaib, Requirements prioritization
techniques review and analysis, in: 2017 Int. Conf. New Trends Comput. Sci., 2017,
pp. 258–263, https://doi.org/10.1109/ICTCS.2017.55.

[31] M. Yousuf, M.U. Bokhari, M. Zeyauddin, An analysis of software requirements
prioritization techniques: a detailed survey, in: Int. Conf. Comput. Sustain. Glob.
Dev., 2016, pp. 3966–3970.

[32] N.M. Carod, A. Cechich, A classification framework for software requirements
prioritization approaches, Rev. Colomb. Comput. 10 (2009) 3283–3285, https://
doi.org/10.1007/978-3-642-04425-0_55.

[33] F. Hujainah, R.B. Abu Bakar, B. Al-Haimi, A.B. Nasser, Analyzing requirement
prioritization techniques based on the used aspects, Res. J. Appl. Sci. 11 (2016)
327–332, https://doi.org/10.3923/rjasci.2016.327.332.

[34] R.B. Svensson, T. Gorschek, B. Regnell, R. Torkar, A. Shahrokni, R. Feldt,
A. Aurum, Prioritization of quality requirements: state of practice in eleven
companies, in: Proc. 2011 IEEE 19th Int. Requir. Eng. Conf. RE 2011, 2011,
pp. 69–78, https://doi.org/10.1109/RE.2011.6051652.

[35] A.A. Zaidan, B.B. Zaidan, M. Hussain, A.M. Al-Haiqi, M.L. Mat Kiah, M. Abdulnabi,
Multi-criteria analysis for OS-EMR software selection problem: a comparative
study, Decis. Support Syst. 78 (2015) 15–27, https://doi.org/10.1016/j.
dss.2015.07.002.

[36] Z. Chourabi, F. Khedher, A. Babay, M. Cheikhrouhou, Multi-criteria decision
making in workforce choice using AHP, WSM and WPM, J. Text. Inst. 110 (2019)
1092–1101, https://doi.org/10.1080/00405000.2018.1541434.

[37] F. Tscheikner-Gratl, P. Egger, W. Rauch, M. Kleidorfer, Comparison of multi-
criteria decision support methods for integrated rehabilitation prioritization, Water
(Switzerland) 9 (2017), https://doi.org/10.3390/w9020068.

[38] A. Ishizaka, P. Nemery, Multi-Criteria Decision Analysis Methods, Wiley, 2013.
[39] M.E. Celebi, H.A. Kingravi, P.A. Vela, A comparative study of efficient initialization

methods for the k-means clustering algorithm, Expert Syst. Appl. 40 (2013)
200–210, https://doi.org/10.1016/j.eswa.2012.07.021.

[40] L. Rokach, O. Maimon, Clustering methods, in: O. Maimon, L. Rokach (Eds.), Data
Min. Knowl. Discov. Handb., Springer, Boston, MA, 2010, pp. 321–352, https://
doi.org/10.1007/0-387-25465-X_15.

[41] E. Alhroob, M.F. Mohammed, C.P. Lim, H. Tao, A critical review on selected fuzzy
min-max neural networks and their significance and challenges in pattern
classification, IEEE Access 7 (2019) 56129–56146, https://doi.org/10.1109/
access.2019.2911955.

[42] E. Alhroob, N.A. Ghani, Fuzzy min-max classifier based on new membership
function for pattern classification: a conceptual solution, in: 2018 8th IEEE Int.
Conf. Control Syst. Comput. Eng., 2018, pp. 131–135, https://doi.org/10.1109/
ICCSCE.2018.8685029.

[43] D. Arthur, S. Vassilvitskii, K-Means++: the advantages of careful seeding, in: Proc.
Eighteenth Annu. ACM-SIAM Symp. Discret. Algorithms, 2007, p. 1027, https://
doi.org/10.1145/1283383.1283494. –1025.

[44] S.Z. Selim, M.A. Ismail, K-means-type algorithms: a generalized convergence
theorem and characterization of local optimality, IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-6 (1984) 81–87, https://doi.org/10.1109/TPAMI.1984.4767478.

[45] R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Networks.
16 (2005) 645–678, https://doi.org/10.1109/TNN.2005.845141.

[46] D. Xu, Y. Tian, A comprehensive survey of clustering algorithms, Ann. Data Sci. 2
(2015) 165–193, https://doi.org/10.1007/s40745-015-0040-1.

[47] V. Ahl, An experimental comparison of five prioritization methods – investigating
ease of use, accuracy and scalability, Master’s Thesis, School of Engineering,
Blekinge Institute of Technology, Sweden, 2005.

[48] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer-Verlag, Berlin Heidelberg,
2012.

[49] V. Veerappa, Clustering methods for requirements selection and optimisation, Ph.
D. Thesis. School of Computer Science and Engineering, University College
London, London WC1E 6BT, UK, 2012.

[50] S. Lim, Social networks and collaborative filtering for large-scale requirements
elicitation, Ph.D. Thesis, School of Computer Science and Engineering, University
of New South Wales, Sydney, Austrailia., 2010. http://discovery.ucl.ac.uk/
1329883/.

[51] J.D. Evans, Straightforward Statistics For the Behavioral Sciences, Thomson
Brooks/Cole Publishing Co, 1996.

[52] IBM Corp., IBM SPSS Statistics for Windows, Armonk, 22, NY IBM Corp., 2013,
p. 0.

[53] J.F. Hair, C.M. Ringle, M. Sarstedt, PLS-SEM: indeed a silver bullet, J. Mark. Theory
Pract. 19 (2011) 139–152, https://doi.org/10.2753/MTP1069-6679190202.

[54] D. De Angelis, Y. Grinstein, Relative performance evaluation in CEO compensation:
evidence from the 2006 disclosure rules, Johnson Sch. Res. Pap. Ser. (2011),
https://doi.org/10.2139/ssrn.1710386, 39-2010.

[55] F.M. Tice, Explicit relative performance evaluation and managerial decision-
making : evidence from firm performance and investments, 2017. https://papers.
ssrn.com/abstract=2645956.

[56] G. Gong, L.Y. Li, J.Y. Shin, Relative performance evaluation and related peer
groups in executive compensation contracts, Account. Rev. 83 (2011) 1007–1043,
https://doi.org/10.2308/accr.00000042.

[57] F. Hujainah, R.A. Bakar, E. Alhroob, B. Al-haimi, A.B. Nasser, Interrelated elements
in formulating an efficient requirements prioritization technique: review, in: 2020
10th IEEE Int. Conf. Control Syst. Comput. Eng., 2020, pp. 97–101, https://doi.
org/10.1109/ICCSCE50387.2020.9204955.

[58] N. Kukreja, B. Boehm, S.S. Payyavula, S. Padmanabhuni, Selecting an appropriate
framework for value-based requirements prioritization, in: 2012 20th IEEE Int.
Requir. Eng. Conf., 2012, pp. 303–308, https://doi.org/10.1109/
RE.2012.6345819.

[59] R. Beg, Q. Abbas, R.P. Verma, An approach for requirement prioritization using B-
tree, in: Proc. - 1st Int. Conf. Emerg. Trends Eng. Technol. ICETET 2008, 2008,
pp. 1216–1221, https://doi.org/10.1109/ICETET.2008.158.

[60] G. Kaur, S. Bawa, A survey of requirement prioritization methods, Int. J. Eng. Res.
Technol. 2 (2013) 958–962.

F. Hujainah et al.

http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0008
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0008
https://doi.org/10.1109/INFOMAN.2019.8714709
https://doi.org/10.1109/INFOMAN.2019.8714709
https://doi.org/10.1007/s13369-018-3283-2
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0011
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0011
https://doi.org/10.1016/j.jss.2016.09.043
https://doi.org/10.1016/j.infsof.2014.02.001
https://doi.org/10.1109/FIT.2018.00014
https://doi.org/10.1109/FIT.2018.00014
https://doi.org/10.1016/j.knosys.2015.04.010
https://doi.org/10.1016/j.knosys.2015.04.010
https://doi.org/10.1109/ICIET.2010.5625687
https://doi.org/10.1016/j.infsof.2018.05.008
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867025210&tnqh_x0026;partnerID=40&tnqh_x0026;md5=347940a3a8a79a5eb31fb427897ced76
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867025210&tnqh_x0026;partnerID=40&tnqh_x0026;md5=347940a3a8a79a5eb31fb427897ced76
http://www.scopus.com/inward/record.url?eid=2-s2.0-84867025210&tnqh_x0026;partnerID=40&tnqh_x0026;md5=347940a3a8a79a5eb31fb427897ced76
https://doi.org/10.1371/journal.pone.0121344
https://doi.org/10.1371/journal.pone.0121344
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0021
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0021
https://doi.org/10.1145/1806799.1806844
https://doi.org/10.1145/1806799.1806844
https://doi.org/10.17559/TV-20171129125407
https://doi.org/10.1016/S0950-5849(97)00053-0
https://doi.org/10.1016/S0950-5849(97)00053-0
https://doi.org/10.1109/TSE.2012.52
https://doi.org/10.1109/TSE.2012.52
https://doi.org/10.1016/j.infsof.2012.07.003
https://doi.org/10.1016/j.infsof.2012.07.003
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0027
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0027
https://doi.org/10.4018/978-1-4666-2199-2.ch007
https://doi.org/10.25728/assa.2018.18.2.576
https://doi.org/10.1109/ICTCS.2017.55
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0031
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0031
https://doi.org/10.1007/978-3-642-04425-0_55
https://doi.org/10.1007/978-3-642-04425-0_55
https://doi.org/10.3923/rjasci.2016.327.332
https://doi.org/10.1109/RE.2011.6051652
https://doi.org/10.1016/j.dss.2015.07.002
https://doi.org/10.1016/j.dss.2015.07.002
https://doi.org/10.1080/00405000.2018.1541434
https://doi.org/10.3390/w9020068
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0038
https://doi.org/10.1016/j.eswa.2012.07.021
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1007/0-387-25465-X_15
https://doi.org/10.1109/access.2019.2911955
https://doi.org/10.1109/access.2019.2911955
https://doi.org/10.1109/ICCSCE.2018.8685029
https://doi.org/10.1109/ICCSCE.2018.8685029
https://doi.org/10.1145/1283383.1283494
https://doi.org/10.1145/1283383.1283494
https://doi.org/10.1109/TPAMI.1984.4767478
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1007/s40745-015-0040-1
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0048
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0051
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0052
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0052
https://doi.org/10.2753/MTP1069-6679190202
https://doi.org/10.2139/ssrn.1710386
https://papers.ssrn.com/abstract=2645956
https://papers.ssrn.com/abstract=2645956
https://doi.org/10.2308/accr.00000042
https://doi.org/10.1109/ICCSCE50387.2020.9204955
https://doi.org/10.1109/ICCSCE50387.2020.9204955
https://doi.org/10.1109/RE.2012.6345819
https://doi.org/10.1109/RE.2012.6345819
https://doi.org/10.1109/ICETET.2008.158
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0060
http://refhub.elsevier.com/S0950-5849(20)30243-3/sbref0060

	SRPTackle: A semi-automated requirements prioritisation technique for scalable requirements of software system projects
	1 Introduction
	2 Related work
	3 Proposed SRPTackle technique
	3.1 Pre-prioritisation phase
	3.2 Post-prioritisation phase
	3.2.1 Formulation of the requirement priority value
	3.2.2 Classifying the requirements
	3.2.3 Applying the binary search tree

	4 SRPTackle-tool
	5 Experimental studies
	5.1 Experiment definition
	5.2 Hypothesis formulation
	5.3 Variables and measures
	5.4 Objects
	5.5 Subjects
	5.6 Experiment execution

	6 Experimental results
	6.1 RQ1: are the prioritisation results produced by SRPTackle more accurate (compared with the ground truth) than the prior ...
	6.2 RQ2: is SRPTackle less time consuming than Lim et al.’s GA and OSA?

	7 Discussion
	8 Threats to validity
	9 SRPTackle Managerial contributions
	10 Conclusion and future directions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Reference

