105 research outputs found

    Neonatal Ovine Pulmonary Dendritic Cells Support Bovine Respiratory Syncytial Virus Replication with Enhanced Interleukin (IL)-4 And IL-10 Gene Transcripts

    Get PDF
    The lung microenvironment is constantly exposed to microorganisms and particulate matter. Lung dendritic cells (DCs) play a crucial role in the uptake and processing of antigens found within the respiratory tract. Respiratory syncytial virus (RSV) is a common respiratory tract pathogen in children that induces an influx of DCs to the mucosal surfaces of the lung. Using a neonatal lamb model, we examined the in vivo permissiveness of DCs to RSV infection, as well as overall cell surface changes and cytokine responses of isolated lung DCs after bovine RSV (BRSV) infection. We report that isolated lung DCs and alveolar macrophages support BRSV replication. Isolated lung DCs were determined to be susceptible to BRSV infection as demonstrated by quantification of BRSV non-structural protein 2 mRNA. BRSV infection induced an initial upregulation of CD14 expression on lung DCs, but by 5 d postinfection expression was similar to that on control cells. No significant changes in CD80/86 or MHC class I expression were seen on lung DCs after BRSV infection. Low to moderate expression of MHC class II and DEC-205 was detected by day 5 postinfection. Initially, on day 3 postinfection, lung DCs from BRSV-infected lambs had decreased endocytosis of fluorescein isothiocyanate (FITC)–ovalbumin (OVA). The amount of FITC–OVA endocytosed by lung DCs isolated on day 5 postinfection was similar to that of controls. The most interesting observation was the induction of immunomodulatory interleukin (IL)-4 and IL-10 cytokine gene transcription in lung DCs and alveolar macrophages after in vivo infection with BRSV. Overall, these findings are the first to demonstrate that neonatal lung DCs support in vivo BRSV replication and produce type II cytokines after viral infection

    Molecular and Phenotypic Characterization of Escherichia coli O26:H8 among Diarrheagenic E. coli O26 Strains Isolated in Brazil

    Get PDF
    Escherichia coli strains of serogroup O26 comprise two distinct groups of pathogens, characterized as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC). Among the several genes related to type III secretion system-secreted effector proteins, espK was found to be highly specific for EHEC O26:H11 and its stx-negative derivative strains isolated in European countries. E. coli O26 strains isolated in Brazil from infant diarrhea, foods, and the environment have consistently been shown to lack stx genes and are thus considered atypical EPEC. However, no further information related to their genetic background is known. Therefore, in this study, we aimed to discriminate and characterize these Brazilian O26 stx-negative strains by phenotypic, genetic, and biochemical approaches. Among 44 isolates confirmed to be O26 isolates, most displayed flagellar antigen H11 or H32. Out of the 13 nonmotile isolates, 2 tested positive for fliC(H11), and 11 were fliC(H8) positive. the identification of genetic markers showed that several O26:H11 and all O26:H8 strains tested positive for espK and could therefore be discriminated as EHEC derivatives. the presence of H8 among EHEC O26 and its stx-negative derivative isolates is described for the first time. the interaction of three isolates with polarized Caco-2 cells and with intestinal biopsy specimen fragments ex vivo confirmed the ability of the O26 strains analyzed to cause attaching-and-effacing (A/E) lesions. the O26:H32 strains, isolated mostly from meat, were considered nonvirulent. Knowledge of the virulence content of stx-negative O26 isolates within the same serotype helped to avoid misclassification of isolates, which certainly has important implications for public health surveillance.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Inst Butantan, Bacteriol Lab, São Paulo, BrazilFrench Food Safety Agcy, Maisons Alfort, FranceUniv Estadual Londrina, Dept Patol Geral, Ctr Ciencias Biomed, Londrina, Parana, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilCtr Univ Sao Camilo, São Paulo, BrazilBfR Fed Inst Risk Assessment, Natl Reference Lab Escherichia Coli, Berlin, GermanyUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, São Paulo, BrazilWeb of Scienc

    High-throughput screening of tick-borne pathogens in Europe

    Get PDF
    Due to increased travel, climatic, and environmental changes, the incidence of tick-borne disease in both humans and animals is increasing throughout Europe. Therefore, extended surveillance tools are desirable. To accurately screen tick-borne pathogens (TBPs), a large scale epidemiological study was conducted on 7050 Ixodes ricinus nymphs collected from France, Denmark, and the Netherlands using a powerful new high-throughput approach. This advanced methodology permitted the simultaneous detection of 25 bacterial, and 12 parasitic species (including; Borrelia, Anaplasma, Ehrlichia, Rickettsia, Bartonella, Candidatus Neoehrlichia, Coxiella, Francisella, Babesia, and Theileria genus) across 94 samples. We successfully determined the prevalence of expected (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, Rickettsia helvetica, Candidatus Neoehrlichia mikurensis, Babesia divergens, Babesia venatorum), unexpected (Borrelia miyamotoi), and rare (Bartonella henselae) pathogens in the three European countries. Moreover we detected Borrelia spielmanii, Borrelia miyamotoi, Babesia divergens, and Babesia venatorum for the first time in Danish ticks. This surveillance method represents a major improvement in epidemiological studies, able to facilitate comprehensive testing of TBPs, and which can also be customized to monitor emerging diseases

    Drinking water treatment for a rural karst region in Indonesia

    Get PDF
    An interdisciplinary German–Indonesian joint research project on Integrated Water Resources Management (IWRM) focused on the development and exemplary implementation of adapted technologies to improve the water supply situation in a model karst region in southern Java. The project involving 19 sub-projects covers exploration of water resources, water extraction, distribution as well as water quality assurance, and waste water treatment. For the water quality assurance, an appropriate and sustainable drinking water treatment concept was developed and exemplarily implemented. Monitoring results showed that the main quality issue was the contamination with hygienically relevant bacteria. Based on the gained results, a water treatment concept was developed consisting of a central sand filtration prior to the distribution network, a semi-central hygienization where large water volumes are needed to remove bacteria deriving from water distribution and a final point-of-use water treatment. This paper focuses on the development of a central sand filtration plant and some first analysis for the development of a recipe for the local production of ceramic filters for household water treatment. The first results show that arsenic and manganese are leaching from the filters made of local raw material. Though discarding the first, filtrates should be sufficient to reduce arsenic and manganese concentration effectively. Moreover, hydraulic conductivities of filter pots made of 40 % pore-forming agents are presented and discussed

    Evidence for the existence of a new genus Chlamydiifrater gen. nov. inside the family Chlamydiaceae with two new species isolated from flamingo (Phoenicopterus roseus): Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov.

    Get PDF
    The family Chlamydiaceae currently comprises a single genus Chlamydia, with 11 validly published species and seven more taxa. It includes the human pathogens Chlamydia (C.) trachomatis, C. pneumoniae and C. psittaci, a zoonotic agent causing avian chlamydiosis and human psittacosis, as well as other proven or potential pathogens in ruminants, birds, snakes, reptiles and turtles. During routine testing of 15 apparently healthy captive flamingos in a zoo in 2011, an atypical strain of Chlamydiaceae was detected by real-time PCR of cloacal swab samples. Sequence analysis of the 16S rRNA gene revealed high similarity to the uncultured Chlamydiales bacterium clone 122, which previously had been found in gulls. As more samples were collected during annual campaigns of the flamingo ringing program in southern France from 2012 to 2015, Chlamydiaceae-specific DNA was detected by PCR in 30.9% of wild birds. From these samples, three strains were successfully grown in cell culture. Ultrastructural analysis, comparison of 16S and 23S rRNA gene sequences, whole-genome analysis based on de novo hybrid-assembled sequences of the new strains as well as subsequent calculation of taxonomic parameters revealed that the relatedness of the flamingo isolates to established members of the family Chlamydiaceae was sufficiently distant to indicate that the three strains belong to two distinct species within a new genus. Based on these data, we propose the introduction of Chlamydiifrater gen. nov., as a new genus, and Chlamydiifrater phoenicopteri sp. nov. and Chlamydiifrater volucris sp. nov., as two new species of the genus.Martin Hölzer appreciates the support of the Joachim Herz Foundation by the add-on fellowship for interdisciplinary life science.Peer reviewe

    Differential Expression of Cytokines in Response to Respiratory Syncytial Virus Infection of Calves with High or Low Circulating 25-Hydroxyvitamin D3

    Get PDF
    Deficiency of serum levels of 25-hydroxyvitamin D3 has been related to increased risk of lower respiratory tract infections in children. Respiratory syncytial virus (RSV) is a leading cause of low respiratory tract infections in infants and young children. The neonatal calf model of RSV infection shares many features in common with RSV infection in infants and children. In the present study, we hypothesized that calves with low circulating levels of 25-hydroxyvitamin D3 (25(OH)D3) would be more susceptible to RSV infection than calves with high circulating levels of 25(OH)D3. Calves were fed milk replacer diets with different levels of vitamin D for a 10 wk period to establish two treatment groups, one with high (177 ng/ml) and one with low (32.5 ng/ml) circulating 25(OH)D3. Animals were experimentally infected via aerosol challenge with RSV. Data on circulating 25(OH)D3 levels showed that high and low concentrations of 25(OH)D3 were maintained during infection. At necropsy, lung lesions due to RSV were similar in the two vitamin D treatment groups. We show for the first time that RSV infection activates the vitamin D intracrine pathway in the inflamed lung. Importantly, however, we observed that cytokines frequently inhibited by this pathway in vitro are, in fact, either significantly upregulated (IL-12p40) or unaffected (IFN-γ) in the lungs of RSV-infected calves with high circulating levels of 25(OH)D3. Our data indicate that while vitamin D does have an immunomodulatory role during RSV infection, there was no significant impact on pathogenesis during the early phases of RSV infection. Further examination of the potential effects of vitamin D status on RSV disease resolution will require longer-term studies with immunologically sufficient and deficient vitamin D levels
    • …
    corecore