18 research outputs found

    A long noncoding RNA promotes parasite differentiation in African trypanosomes

    Get PDF
    Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC)The parasite Trypanosoma brucei causes African sleeping sickness that is fatal to patients if untreated. Parasite differentiation from a replicative slender form into a quiescent stumpy form promotes host survival and parasite transmission. Long noncoding RNAs (lncRNAs) are known to regulate cell differentiation in other eukaryotes. To determine whether lncRNAs are also involved in parasite differentiation, we used RNA sequencing to survey the T. brucei genome, identifying 1428 previously uncharacterized lncRNA genes. We find that grumpy lncRNA is a key regulator that promotes parasite differentiation into the quiescent stumpy form. This function is promoted by a small nucleolar RNA encoded within the grumpy lncRNA. snoGRUMPY binds to messenger RNAs of at least two stumpy regulatory genes, promoting their expression. grumpy overexpression reduces parasitemia in infected mice. Our analyses suggest that T. brucei lncRNAs modulate parasite-host interactions and provide a mechanism by which grumpy regulates cell differentiation in trypanosomes.This work was supported in part by Fundação para a Ciência e Tecnologia (FCT) grant, awarded to F.G. and entitled “Long noncoding RNAs as new diagnostic biomarkers for African Sleeping sickness” (PTDC/DTPEPI/7099/2014, start date: 1 January 2016, end date: 31 December 2018); also by Howard Hughes Medical Institute International Early Career Scientist Program (project title: “How parasites use epigenetics to evade host defenses,” project no. 55007419, start date: 1 February 2012, end date: 31 January 2017); and by the European Research Council (project title: “Exploring the hidden life of African trypanosomes: parasite fat tropism and implications for the disease,” project no. 771714, start date: 1 August 2018, end date: 31 January 2024), both awarded to L.M.F. The project leading to these results have received funding from “la Caixa” Foundation under the agreement LCF/PR/HR20/52400019 [project title: “Mechanism and function of epitranscriptomic poly(A) tail modifications in African trypanosomes,” project no. HR20-00361, start date: 1 March 2021, end date: 29 February 2024]. L.M.F. is supported by FCT (IF/01050/2014, project title: “Molecular basis for the efficient biology of trypanossome parasitism,” start date: 1 January 2015, end date: 31 December 2019) and by CEEC institutional program (CEECINST/00110/2018, start date: 1 January 2020, end date: 14 December 2020). C.N. acknowledges the support of the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) to the EMBL partnership, the Centro de Excelencia Severo Ochoa and the CERCA Programme/Generalitat de Catalunya. S. Michaeli acknowledges the support of the Israel Science Foundation (ref. 1959/20) from October 2020 to October 2025, entitled “Functional analysis of rRNA processing and the role of rRNA modification for specialized translation in the two life stages of trypanosomes” and U.S. Binational Science Foundation (ref. 2015/219) from October 2015 to October 2019, entitled “The role and mechanism of RNA pseudo-uridylation and sugar methylation (Nm) during the developmental cycle of trypanosomes.” The work done in A.D.’s laboratory was supported by National Science Center SONATA BIS grant, entitled “Non-canonical RNA tailing and other post-transcriptional regulatory mechanisms in T cell-mediated adaptive immunity” (proposal ID: 492777, agreement no: UMO-2020/38/E/NZ2/00372, start date: 22 March 2021, end date: 21 March 2026); National Science Center OPUS grant, entitled “Analysis of the role of cytoplasmic polyadenylation in the regulation of the innate immune response” (proposal ID: 443521, agreement no.: UMO-2019/33/B/NZ2/01773, start date: 2 March 2020, end date: 1 March 2023); and European Union’s Horizon 2020 (H2020-WIDESPREAD-03-2017)–ERAChair, entitled “MOlecular Signaling in Health and Disease - Interdisciplinary Centre of Excellence” (acronym: MOSaIC, agreement no.: 810425, implementation period: start date: 1 November 2018, end date: 31 October 2023).info:eu-repo/semantics/publishedVersio

    Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice

    Get PDF
    This work was supported by 55007419 (HHMI) and 2151 (EMBO) to L.M.F., D.P.-N., F.B., and F.G.; FCT fellowships to S.T., F.R.-F., and F.A.-B. (SFRH/BPD/89833/2012, SFRH/BD/51286/2010, and SFRH/BD/80718/2011, respectively); Wellcome Trust grant (093228), MRC MR/M020118/1, and European Community Seventh Framework Programme under grant agreement No. 602773 (Project KINDRED) to S.A.Y. and T.K.S.; and PAI 7/41 (Belspo) and ERC-NANOSYM to J.V.D.A.Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenous myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. These findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.Publisher PDFPeer reviewe

    Complete In Vitro Life Cycle of Trypanosoma congolense: Development of Genetic Tools

    Get PDF
    Trypanosoma congolense is a parasite responsible for severe disease of African livestock. Its life cycle is complex and divided into two phases, one in the tsetse fly vector and one in the bloodstream of the mammalian host. Molecular tools for gene function analyses in parasitic organisms are essential. Previous studies described the possibility of completing the entire T. congolense life cycle in vitro. However, the model showed major flaws including the absence of stable long-term culture of the infectious bloodstream forms, a laborious time-consuming period to perform the cycle and a lack of genetic tools. We therefore aimed to develop a standardized model convenient for genetic engineering. We succeeded in producing long-term cultures of all the developmental stages on long-term, to define all the differentiation steps and to finally complete the whole cycle in vitro. This improved model offers the opportunity to conduct phenotype analyses of genetically modified strains throughout the in vitro cycle and also during experimental infections

    Mutations in DCC cause isolated agenesis of the corpus callosum with incomplete penetrance

    Get PDF
    Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual

    Characterization of sialidase in the parasite Trypanosoma vivax : role in anemia

    No full text
    La trypanosomiase animale africaine (TAA) est une pathologie qui sévit en Afrique sub-saharienne et qui représente un obstacle majeur à l’élevage du bétail et à la production agricole. Cette pathologie est causée principalement par les parasites T. congolense et T. vivax. Elle affecte le bétail, les animaux domestiques et sauvages, sur un territoire de 10 millions de km2 où ces animaux cohabitent avec l’insecte vecteur, la mouche Tsé-Tsé. L’infection du bétail par ces parasites provoque une anémie sévère pouvant entraîner la mort de l’animal. Dans ce contexte, nous nous sommes intéressés à l’étude des mécanismes impliqués dans le développement de l’anémie lors de l’infection de l’animal par T. vivax. Pour cela, nous avons développé un modèle murin d’infection par T. vivax. Nous avons démontré que l’infection à T. vivax induit d’importantes modifications des acides sialiques présents à la surface des érythrocytes. De plus, nous avons établi un système expérimental « ex-vivo » qui nous a permis de montrer que l’anémie observée au cours de l’infection était dépendante du mécanisme d’érythrophagocytose. Les modifications en acides sialiques des érythrocytes constitueraient un signal de reconnaissance des érythrocytes par les cellules phagocytaires de l’hôte. Par ailleurs, nous avons mis au point des conditions de culture in vitro pour tous les stades parasitaires de T. vivax et T. congolense afin de développer des outils de génomique fonctionnelle. Ces avancées nous ont notamment permis d’identifier des enzymes de type sialidase et trans-sialidase et de détecter les activités enzymatiques correspondantes dans les formes infectieuses de ces parasites. Nous avons exprimé des trans-sialidases recombinantes et démontré qu’elles étaient capables de reproduire in vitro certaines des caractéristiques pathologiques définies in vivo : modifications en acides sialiques des érythrocytes et augmentation de l’érythrophagocytose. Par conséquent, ces travaux ont permis pour la première fois de mettre en évidence un lien entre l’expression des sialidases et trans-sialidases chez le parasite T. vivax et le développement de l’anémie au cours de la TAA.African animal trypanosomiasis (AAT) is a parasitic disease occurring in sub-Saharan Africa. It impairs livestock development and agricultural production. This disease is mainly caused by T. congolense and T. vivax parasites and is present in livestock, domestic and wild animals, covering an area of over a 10 millions km2, that is known as the Tsé-Tsé fly belt. These infections cause severe anaemia leading to animal death in most cases. In this context, we were interested in unravelling the mechanisms responsible for anaemia caused by T. vivax infection. We developed a murine model for T. vivax infection and our data pointed out important sialic acid modifications of the mouse erythrocyte surface during infection. Additionally, an ex-vivo experimental model was established which proved that anaemia associated with infection depends on erythrophagocytosis. Consequently, we propose that sialic acid modifications associated with infection are involved in the erythrophagocytosis mechanism. Furthermore, in order to develop genetic tools we established in vitro culture conditions for all parasite forms of T. vivax and T. congolense. Parasite cultivation allowed the detection of sialidase and trans-sialidase activity and identifies the presence and function of these proteins in the mammalian form of the parasite. Moreover, trans-sialidase recombinant proteins reproduced some of the T. vivax infection characteristics such as sialic acid modification and increased erythrophagocytosis. Consequently, this work provides the first evidence that links the expression of sialidases and trans-sialidases in T. vivax with the development of anemia during AAT

    Characterization of sialidase in the parasite Trypanosoma vivax : role in anemia

    No full text
    La trypanosomiase animale africaine (TAA) est une pathologie qui sévit en Afrique sub-saharienne et qui représente un obstacle majeur à l’élevage du bétail et à la production agricole. Cette pathologie est causée principalement par les parasites T. congolense et T. vivax. Elle affecte le bétail, les animaux domestiques et sauvages, sur un territoire de 10 millions de km2 où ces animaux cohabitent avec l’insecte vecteur, la mouche Tsé-Tsé. L’infection du bétail par ces parasites provoque une anémie sévère pouvant entraîner la mort de l’animal. Dans ce contexte, nous nous sommes intéressés à l’étude des mécanismes impliqués dans le développement de l’anémie lors de l’infection de l’animal par T. vivax. Pour cela, nous avons développé un modèle murin d’infection par T. vivax. Nous avons démontré que l’infection à T. vivax induit d’importantes modifications des acides sialiques présents à la surface des érythrocytes. De plus, nous avons établi un système expérimental « ex-vivo » qui nous a permis de montrer que l’anémie observée au cours de l’infection était dépendante du mécanisme d’érythrophagocytose. Les modifications en acides sialiques des érythrocytes constitueraient un signal de reconnaissance des érythrocytes par les cellules phagocytaires de l’hôte. Par ailleurs, nous avons mis au point des conditions de culture in vitro pour tous les stades parasitaires de T. vivax et T. congolense afin de développer des outils de génomique fonctionnelle. Ces avancées nous ont notamment permis d’identifier des enzymes de type sialidase et trans-sialidase et de détecter les activités enzymatiques correspondantes dans les formes infectieuses de ces parasites. Nous avons exprimé des trans-sialidases recombinantes et démontré qu’elles étaient capables de reproduire in vitro certaines des caractéristiques pathologiques définies in vivo : modifications en acides sialiques des érythrocytes et augmentation de l’érythrophagocytose. Par conséquent, ces travaux ont permis pour la première fois de mettre en évidence un lien entre l’expression des sialidases et trans-sialidases chez le parasite T. vivax et le développement de l’anémie au cours de la TAA.African animal trypanosomiasis (AAT) is a parasitic disease occurring in sub-Saharan Africa. It impairs livestock development and agricultural production. This disease is mainly caused by T. congolense and T. vivax parasites and is present in livestock, domestic and wild animals, covering an area of over a 10 millions km2, that is known as the Tsé-Tsé fly belt. These infections cause severe anaemia leading to animal death in most cases. In this context, we were interested in unravelling the mechanisms responsible for anaemia caused by T. vivax infection. We developed a murine model for T. vivax infection and our data pointed out important sialic acid modifications of the mouse erythrocyte surface during infection. Additionally, an ex-vivo experimental model was established which proved that anaemia associated with infection depends on erythrophagocytosis. Consequently, we propose that sialic acid modifications associated with infection are involved in the erythrophagocytosis mechanism. Furthermore, in order to develop genetic tools we established in vitro culture conditions for all parasite forms of T. vivax and T. congolense. Parasite cultivation allowed the detection of sialidase and trans-sialidase activity and identifies the presence and function of these proteins in the mammalian form of the parasite. Moreover, trans-sialidase recombinant proteins reproduced some of the T. vivax infection characteristics such as sialic acid modification and increased erythrophagocytosis. Consequently, this work provides the first evidence that links the expression of sialidases and trans-sialidases in T. vivax with the development of anemia during AAT

    Caractérisation des sialidases chez le parasite Trypanosoma vivax (rôle dans l'anémie)

    No full text
    La trypanosomiase animale africaine (TAA) est une pathologie qui sévit en Afrique sub-saharienne et qui représente un obstacle majeur à l élevage du bétail et à la production agricole. Cette pathologie est causée principalement par les parasites T. congolense et T. vivax. Elle affecte le bétail, les animaux domestiques et sauvages, sur un territoire de 10 millions de km2 où ces animaux cohabitent avec l insecte vecteur, la mouche Tsé-Tsé. L infection du bétail par ces parasites provoque une anémie sévère pouvant entraîner la mort de l animal. Dans ce contexte, nous nous sommes intéressés à l étude des mécanismes impliqués dans le développement de l anémie lors de l infection de l animal par T. vivax. Pour cela, nous avons développé un modèle murin d infection par T. vivax. Nous avons démontré que l infection à T. vivax induit d importantes modifications des acides sialiques présents à la surface des érythrocytes. De plus, nous avons établi un système expérimental ex-vivo qui nous a permis de montrer que l anémie observée au cours de l infection était dépendante du mécanisme d érythrophagocytose. Les modifications en acides sialiques des érythrocytes constitueraient un signal de reconnaissance des érythrocytes par les cellules phagocytaires de l hôte. Par ailleurs, nous avons mis au point des conditions de culture in vitro pour tous les stades parasitaires de T. vivax et T. congolense afin de développer des outils de génomique fonctionnelle. Ces avancées nous ont notamment permis d identifier des enzymes de type sialidase et trans-sialidase et de détecter les activités enzymatiques correspondantes dans les formes infectieuses de ces parasites. Nous avons exprimé des trans-sialidases recombinantes et démontré qu elles étaient capables de reproduire in vitro certaines des caractéristiques pathologiques définies in vivo : modifications en acides sialiques des érythrocytes et augmentation de l érythrophagocytose. Par conséquent, ces travaux ont permis pour la première fois de mettre en évidence un lien entre l expression des sialidases et trans-sialidases chez le parasite T. vivax et le développement de l anémie au cours de la TAA.African animal trypanosomiasis (AAT) is a parasitic disease occurring in sub-Saharan Africa. It impairs livestock development and agricultural production. This disease is mainly caused by T. congolense and T. vivax parasites and is present in livestock, domestic and wild animals, covering an area of over a 10 millions km2, that is known as the Tsé-Tsé fly belt. These infections cause severe anaemia leading to animal death in most cases. In this context, we were interested in unravelling the mechanisms responsible for anaemia caused by T. vivax infection. We developed a murine model for T. vivax infection and our data pointed out important sialic acid modifications of the mouse erythrocyte surface during infection. Additionally, an ex-vivo experimental model was established which proved that anaemia associated with infection depends on erythrophagocytosis. Consequently, we propose that sialic acid modifications associated with infection are involved in the erythrophagocytosis mechanism. Furthermore, in order to develop genetic tools we established in vitro culture conditions for all parasite forms of T. vivax and T. congolense. Parasite cultivation allowed the detection of sialidase and trans-sialidase activity and identifies the presence and function of these proteins in the mammalian form of the parasite. Moreover, trans-sialidase recombinant proteins reproduced some of the T. vivax infection characteristics such as sialic acid modification and increased erythrophagocytosis. Consequently, this work provides the first evidence that links the expression of sialidases and trans-sialidases in T. vivax with the development of anemia during AAT.BORDEAUX2-Bib. électronique (335229905) / SudocSudocFranceF

    A two-stage solution

    Get PDF
    © Copyright Guegan and Figueiredo. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.The parasite that causes African sleeping sickness can be transmitted from mammals to Tsetse flies in two stages of its lifecycle, rather than one as was previously thought.info:eu-repo/semantics/publishedVersio

    Erythrophagocytosis of desialylated red blood cells is responsible for anaemia during Trypanosoma vivax infection.

    No full text
    International audienceTrypanosomal infection-induced anaemia is a devastating scourge for cattle in widespread regions. Although Trypanosoma vivax is considered as one of the most important parasites regarding economic impact in Africa and South America, very few in-depth studies have been conducted due to the difficulty of manipulating this parasite. Several hypotheses were proposed to explain trypanosome induced-anaemia but mechanisms have not yet been elucidated. Here, we characterized a multigenic family of trans-sialidases in T. vivax, some of which are released into the host serum during infection. These enzymes are able to trigger erythrophagocytosis by desialylating the major surface erythrocytes sialoglycoproteins, the glycophorins. Using an ex vivo assay to quantify erythrophagocytosis throughout infection, we showed that erythrocyte desialylation alone results in significant levels of anaemia during the acute phase of the disease. Characterization of virulence factors such as the trans-sialidases is vital to develop a control strategy against the disease or parasite
    corecore