145 research outputs found

    A calorimetric study of plasma based thin film deposition applications

    Get PDF
    Nowadays plasma based processes are widely used for surface modification in a great variety of industrial applications. In many cases plasma based deposition techniques are used to tailor functional thin films on an atomic or molecular scale. The ability to control the plasma process opened new ways in material sciences. One key element during plasma coating is the interaction between the plasma itself and the surrounding surfaces, also called plasma-wall interactions (PWI) or plasma-surface interactions (PSI). It dictates the structure and morphology of the deposited film and has been studied extensively in the last decades. The main interaction relies on particle fluxes which may or may not deposit a significant amount of energy once they hit the surface, binding to the film or getting reflected. Therefore, the characterization of the particles as well as the energy flux reaching the surface is of great importance since it helps to understand fundamental mechanisms and may grant opportunities to improve existing processes for surface modification or develop new ones. In this thesis different plasma based processes used to deposit nanostructured materials are preferably investigated using a calorimetric probe, i.e. a passive thermal probe, which is able to measure the integral energy flux. Combined with additional probe measurements (Langmuir probe, quartz crystal microbalance) and sputter-based simulations (SRIM) a detailed insight of the particle interaction between the plasma and the surface can be obtained. This includes the generation of secondary particles, e.g. secondary electrons which may occur during particle bombardment of a surface. Understanding the energy flux and its origin creates the ability to tailor the different processes to the desired outcome and helps to connect key properties of the final product to certain plasma parameters and discharge conditions

    Textile and Film Based Building Envelopes – Lightweight and Adaptive

    Get PDF
    This paper presents recent advances in the field of multilayer textile cladding systems with a focus on the latest findings. Primary topics are the special characteristics of textile materials in building envelopes in relation to thermal insulation, vapour issues and changing weather conditions as well as the acoustic evaluation of such ultralight systems and the ambitious demands of acoustic insulation and spatial acoustics

    Laser powder bed fusion (LPBF) of commercially pure titanium and alloy development for the LPBF process

    Get PDF
    Laser powder bed fusion (LPBF) of titanium or titanium alloys allows fabrication of geometrically more complex and, possibly, individualized implants or osteosynthesis products and could thus improve the outcome of medical treatments considerably. However, insufficient LPBF process parameters can result in substantial porosity, decreasing mechanical properties and requiring post-treatment. Furthermore, texturized parts with anisotropic properties are usually obtained after LPBF processing, limiting their usage in medical applications. The present study addresses both: first, a design of experiments is used in order to establish a set of optimized process parameters and a process window for LPBF printing of small commercially pure (CP) titanium parts with minimized volume porosity. Afterward, the first results on the development of a biocompatible titanium alloy designed for LPBF processing of medical implants with improved solidification and more isotropic properties are presented on the basis of conventionally melted alloys. This development was performed on the basis of Ti-0.44O-0.5Fe-0.08C-0.4Si-0.1Au, a near-α alloy presented by the authors for medical applications and conventional manufacturing, with yttrium and boron additions as additional growth restriction solutes. In terms of LPBF processing of CP titanium grade 1 powder, a high relative density of approximately 99.9% was obtained in the as-printed state of the volume of a small cubical sample by using optimized laser power, scanning speed, and hatch distance in combination with a rotating scanning pattern. Moreover, tensile specimens processed with these volume settings and tested in the as-printed milled state exhibited a high average yield and ultimate tensile strength of approximately 663 and 747 N/mm2, respectively, combined with a high average ductility of approximately 24%. X-ray diffraction results suggest anisotropic mechanical properties, which are, however, less pronounced in terms of the tested specimens. Regarding alloy development, the results show that yttrium additions lead to a considerable microstructure refinement but have to be limited due to the occurrence of a large amount of precipitations and a supposed higher propensity for the formation of long columnar prior β-grains. However, phase/texture and microstructure analyses indicate that Ti-0.44O-0.5Fe-0.08C-0.4Si-0.1Au-0.1B-0.1Y is a promising candidate to achieve lower anisotropy during LPBF processing, but further investigations on LPBF printing and Y2O3 formation are necessary

    A Comparison of the Magmatic Evolution of Pacific Intraplate Volcanoes: Constraints on Melting in Mantle Plumes

    Get PDF
    The interaction of deep mantle plumes with lithospheric plates is one fundamental concept of plate tectonics. Based on observations mainly made on the Hawaiian volcanoes the compositional evolution of hotspot volcanoes is believed to reflect the variation of partial melting and source composition as the plate moves across the different melting zones of the mantle plume. The model predicts the formation of several magmatic stages that differ in composition. In order to test this model, we compare published compositional and age data from the intraplate volcanoes of the Hawaii, Society, Marquesas and Samoa hotspots on the older part of the Pacific Plate. The compiled data indicate that most volcanoes display variations within and between several magmatic series, and in most cases the more evolved lavas are associated with the voluminous shield stage. The Hawaiian volcanoes show up to four different series ranging from tholeiites to nephelinites/melilitites, whereas the other hotspots mainly erupt two magmatic series consisting of transitional basalts and basanites. Submarine preshield stages at the Society and Marquesas hotspots resemble those observed at Hawaii. The large variation of primitive magmas in the Hawaiian plume as opposed to the other Pacific intraplate systems may reflect the higher temperatures, higher buoyancy flux, and extreme chemical heterogeneity at Hawaii. The shield stage activity at all four hotspots lasts for 1 million years indicating similar widths of the melting zone, although the temperatures of the distinct mantle plumes vary considerably. The relatively depleted shield stage magmatism typically overlaps by ~200 kyrs with the formation of the more enriched postshield magmas indicating that the two melting and magma ascent systems exist contemporaneously

    Serum creatinine and cystatin C‐based estimates of glomerular filtration rate are misleading in acute heart failure

    Get PDF
    Aims: We aimed to test whether the endogenous filtration markers serum creatinine or cystatin C and equation-based estimates of glomerular filtration rate (GFR) based on these markers appropriately reflect changes of measured GFR in patients with acute heart failure. Methods: In this prospective cohort study of 50 hospitalized acute heart failure patients undergoing decongestive therapy, we applied an intravenous visible fluorescent injectate (VFI), consisting of a low molecular weight component to measure GFR and a high molecular weight component to correct for measured plasma volume. Thirty-eight patients had two sequential GFR measurements 48 h apart. The co-primary endpoints of the study were safety of VFI and plasma stability of the high molecular weight component. A key secondary endpoint was to compare changes in measured GFR (mGFR) to changes of serum creatinine, cystatin C and estimated GFR. Results: VFI-based GFR measurements were safe and consistent with plasma stability of the high molecular weight component and glomerular filtration of the low molecular weight component. Filtration marker-based point estimates of GFR, when compared with mGFR, provided only moderate correlation (Pearson's r, range 0.80-0.88, depending on equation used), precision (r(2), range 0.65-0.78) and accuracy (56%-74% of estimates scored within 30% of mGFR). Correlations of 48-h changes GFR estimates and changes of mGFR were significant (P 15% decrease in mGFR. Conclusions: In patients hospitalized for acute heart failure, serum creatinine- and cystatin C-based predictions performed poorly in detecting actual changes of GFR. These data challenge current clinical strategies to evaluate dynamics of kidney function in acute heart failure

    Discordance between estimated and measured changes in plasma volume among patients with acute heart failure

    Get PDF
    Aims: In acute heart failure (AHF), changes of venous haemoglobin (Hb) concentrations, haematocrit (Hct), and estimated plasma volume (ePV) have been proposed as surrogates of decongestion. These estimates are based on the theoretical assumptions that changes of Hb concentrations and Hct are driven by the intravascular volume status and that the intravascular Hb pool remains stable. The objective of this study was to assess the relationship of changes of measured plasma volume (mPV) with changes of Hb, Hct, and ePV in AHF. Methods and results: We studied 36 AHF patients, who received two sequential assessments of mPV, measured red cell volume (mRCV) and measured total blood volume (mTBV) (48 h apart), during the course of diuretic therapy using a novel visible fluorescent injectate (VFI) technique based on the indicator dilution principle. Changes of ePV were calculated based on the Kaplan-Hakim or Strauss formula. AHF patients receiving diuretics (median intravenous furosemide equivalent 160 mg/48 h) displayed a wide range of changes of mPV (-25.4% to +37.0%). Changes in mPV were not significantly correlated with changes of Hb concentration [Pearson's r (r) = -0.241, P = 0.157], Hct (r = -0.307, P = 0.069), ePV(Kaplan-Hakim) (r = 0.228, P = 0.182), or ePV(strauss) (r = 0.237, P = 0.163). In contrast to theoretical assumptions, changes of mTBV were poorly correlated with changes of Hb concentrations and some patients displayed unanticipated variability of mRCV, suggesting an unstable intravascular red cell pool. Conclusions: Changes of Hb or Hct were not reflective of directly measured changes of intravascular volume status in AHF patients. Basing clinical assessment of decongestion on changes of Hb or Hct may misguide clinical decision-making on an individual patient level

    Elimusertib has anti-tumor activity in preclinical patient-derived pediatric solid tumor models

    Get PDF
    The small molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), elimusertib, is currently being tested clinically in various cancer entities in adults and children. Its preclinical anti-tumor activity in pediatric malignancies, however, is largely unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 patient-derived xenograft (PDX) models derived from common pediatric solid tumor entities. Detailed in vitro and in vivo molecular characterization of the treated models enabled the evaluation of response biomarkers. Pronounced objective response rates were observed for elimusertib monotherapy in PDX, when treated with a regimen currently used in clinical trials. Strikingly, elimusertib showed stronger anti-tumor effects than some standard of care chemotherapies, particularly in alveolar rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical anti-tumor activity in pediatric solid tumor models, which may translate to clinically meaningful responses in patients

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Serum-free process development:improving the yield and consistency of human mesenchymal stromal cell production

    Get PDF
    Background aims: The cost-effective production of human mesenchymal stromal cells (hMSCs) for off-the-shelf and patient specific therapies will require an increasing focus on improving product yield and driving manufacturing consistency. Methods: Bone marrow-derived hMSCs (BM-hMSCs) from two donors were expanded for 36 days in monolayer with medium supplemented with either fetal bovine serum (FBS) or PRIME-XV serum-free medium (SFM). Cells were assessed throughout culture for proliferation, mean cell diameter, colony-forming potential, osteogenic potential, gene expression and metabolites. Results: Expansion of BM-hMSCs in PRIME-XV SFM resulted in a significantly higher growth rate (P 2 = 0.8705) across all conditions. PRIME-XV SFM has also shown increased consistency in BM-hMSC characteristics such as per cell metabolite utilization, in vitro colony-forming potential and osteogenic potential despite the higher number of population doublings. Conclusions: We have increased the yield and consistency of BM-hMSC expansion between donors, demonstrating a level of control over the product, which has the potential to increase the cost-effectiveness and reduce the risk in these manufacturing processes

    The immune system and the impact of zinc during aging

    Get PDF
    The trace element zinc is essential for the immune system, and zinc deficiency affects multiple aspects of innate and adaptive immunity. There are remarkable parallels in the immunological changes during aging and zinc deficiency, including a reduction in the activity of the thymus and thymic hormones, a shift of the T helper cell balance toward T helper type 2 cells, decreased response to vaccination, and impaired functions of innate immune cells. Many studies confirm a decline of zinc levels with age. Most of these studies do not classify the majority of elderly as zinc deficient, but even marginal zinc deprivation can affect immune function. Consequently, oral zinc supplementation demonstrates the potential to improve immunity and efficiently downregulates chronic inflammatory responses in the elderly. These data indicate that a wide prevalence of marginal zinc deficiency in elderly people may contribute to immunosenescence
    corecore