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Abstract 

The small molecule inhibitor of ataxia telangiectasia and Rad3-related protein (ATR), 

elimusertib, is currently being tested clinically in various cancer entities in adults and 

children. Its preclinical anti-tumor activity in pediatric malignancies, however, is largely 

unknown. We here assessed the preclinical activity of elimusertib in 38 cell lines and 32 

patient-derived xenograft (PDX) models derived from common pediatric solid tumor 

entities. Detailed in vitro and in vivo molecular characterization of the treated models 

enabled the evaluation of response biomarkers. Pronounced objective response rates 

were observed for elimusertib monotherapy in PDX, when treated with a regimen 

currently used in clinical trials. Strikingly, elimusertib showed stronger anti-tumor 

effects than some standard of care chemotherapies, particularly in alveolar 

rhabdomysarcoma PDX. Thus, elimusertib has strong preclinical anti-tumor activity in 

pediatric solid tumor models, which may translate to clinically meaningful responses in 

patients.  
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Introduction 

Pediatric cancers are rare but represent a leading cause of death in children (1). 

Currently, pediatric solid tumors are treated with a histology-specific and risk-stratified 

combination of surgery, radiotherapy, and chemotherapy. Despite steady improvements 

in the survival rate of childhood cancers over the last several decades (2), cures remain 

unacceptably low for many high risk pediatric solid tumors. Even for those who are 

ultimately cured, the aggressive multi-modality approaches are frequently associated 

with severe long-term morbidities (3). As a result, there is an urgent need to identify 

novel therapeutic approaches, which leverage specific tumor vulnerabilities. 

Compared to adult cancers, which often demonstrate high numbers of mutations 

accumulated over a lifetime, pediatric tumors generally arise during developmental 

windows in a tissue-context specific manner, often harboring only few mutational 

drivers and a low mutational burden (4). A common feature among pediatric solid 

tumors is the presence of fusion oncoproteins, which emerge as a result of chromosomal 

aberrations (5). Additionally, intra- and extrachromosomal oncogene amplifications are 

frequent in certain pediatric solid tumors, such as in neuroblastoma, where MYCN 

amplifications, often occurring on ecDNA, are a predictor for poor prognosis (6-10). 

Both gene amplifications and fusion oncoproteins are hard to therapeutically target 

directly, particularly when affecting transcription factors, which has hampered the 

development of selective therapies in these tumor entities.  

Genomic instability is a hallmark of cancer cells (11), which has recently been shown to 

be therapeutically actionable (12). The extreme proliferation rate in cancer cells, in part 

induced by fusion oncoproteins and oncogene amplifications, can result in delays or 

errors in the DNA termed replication stress (13-15). In response to the damaged DNA, 

cells have intricate mechanisms to recognize and repair lesions while ensuring that the 
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cell cycle is halted, termed the DNA damage response (DDR). The DDR is mainly 

regulated by three kinases: ataxia telangiectasia mutated (ATM), ataxia telangiectasia- 

and Rad3-related (ATR), and DNA-dependent protein kinase catalytic subunit (DNA-

PKcs) (16). Even though they have similar protein sequences, and their targets overlap, 

it is widely accepted that they respond to different stimuli (17). While ATM and DNA-

PKcs are mostly activated after double strand breaks (DSBs), ATR responds primarily 

to replication stress-associated DNA damage, which often involves single stranded 

DNA intermediates (18,19). Because ATR is activated in response to replication stress, 

it has been suggested that cancers depend on ATR more strongly than non-transformed 

cells to tolerate high levels of replication stress (20,21). These findings have fueled the 

interest to test ATR inhibitors as a therapeutic option in cancer, particularly in tumors 

with high replication stress. Some biomarkers for predicting ATR inhibitor response 

have been put forward, e.g. ATM loss, TP53 loss, MYC overexpression, CDC25A 

overexpression, PGBD5 expression and fusion oncoproteins such as EWS-FLI1 and 

PAX3-FOXO1, which increase sensitivity to ATR inhibitors (22-30) and are currently 

considered in clinical trial design (NCT04095273, NCT03188965, NCT03682289, 

NCT04170153, NCT04576091, NCT04535401, NCT04657068, NCT05338346, 

NCT04616534, NCT04514497, NCT05071209). How most pediatric solid tumor 

entities may benefit from ATR inhibitor treatment is difficult to predict, as detailed 

preclinical information is currently missing.  

Here we profiled the anti-tumor effects of the ATR inhibitor elimusertib (also known as 

BAY 1895344 (31,32)) in vitro and in a cohort of PDXs from pediatric solid tumors. In 

order to create a solid basis for future clinical trial designs, we compared the effects of 

elimusertib to those of first-line standard of care (SoC) chemotherapeutics. We 

demonstrate that monotherapy with elimusertib has most pronounced antiproliferative 
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effects in models of alveolar rhabdomyosarcoma and neuroblastoma, and identify 

specific molecular alterations that may predict response to elimusertib. These findings 

highlight a potential therapeutic role for ATR inhibition in a subset of childhood solid 

tumors and provide a basis to accelerate the translation into meaningful clinical 

applications. 

 

Materials and Methods 

Study design 

The purpose of this study was to examine the effects of ATR inhibition in preclinical 

models of pediatric solid tumors and identify potential biomarkers to select patients that 

could benefit from a treatment with the ATR inhibitor elimusertib. We first determined 

the inhibitory activity of the elimusertib in cell models, and compared these cells based 

on known determinants of ATR inhibition sensitivity, as well as the presence of 

oncogenes which increase the level of replication stress. We analyzed the effects of 

elimusertib treatment on cell cycle control and genomic instability. All in vitro 

experiments were performed following the guidelines proposed by Carola A.S. Arndt 

for pediatric tumors (33). In the study, five to eight cell lines were used per disease, for 

which we validated the expression of the target genes and included the elimusertib IC50 

after 72h. Outliers were not excluded unless technical errors were present. For in vivo 

testing, sample size was decided based on previous experience with the models. 

Animals euthanized before the end of the experiment, due to excessive tumor growth or 

loss of body weight, were included in the analysis.  

 

Reagents 
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 All reagents were obtained from Carl Roth ( Karlsruhe, Germany) unless otherwise 

indicated. Elimusertib (BAY1895344, 2-[(3R)-3-methylmorpholin-4-yl]-4-(1-methyl-

1H-pyrazol-5-yl)-8-(1H-pyrazol-5-yl)-1,7-naphthyridine) was synthesized and provided 

to us by Bayer AG (Leverkusen, Germany). Its structure and synthesis have been 

previously published (31,32). Elimusertib was dissolved in dimethyl sulfoxide (DMSO) 

and stored at 10 mM concentrations at -20 °C until further use. 

 

Cell culture 

All neuroblastoma and Ewing sarcoma cell lines were kindly provided by Prof. J.H. 

Schulte (Charité). Rh41, Kym1 and Rh18 cells were a kind gift from Prof. Simone 

Fulda (Kiel, Germany). The remaining human tumor cell lines were obtained from the 

American Type Culture Collection (ATCC, Manassas, Virginia). All 

rhabdomyosarcoma and all Ewing’s sarcoma cell lines, as well as RPE and BJ cell lines 

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, Thermo Fisher 

Scientific, Waltham, Massachusetts, USA) supplemented with 10% fetal calf serum 

(Thermo Fisher) and penicillin/streptomycin (Gibco, Thermo Fisher Scientific). All 

neuroblastoma cell lines were cultured in Roswell Park Memorial Institute (RPMI)-

1640 (Gibco, Thermo Fisher Scientific) supplemented with 10% fetal calf serum and 

penicillin/streptomycin. Twice per week, cells were washed with phosphate-buffered 

saline (PBS), incubated in 0.05% Trypsin-EDTA (1x) (Gibco, Thermo Fisher Scientific) 

for five minutes, resuspended in culture medium, sedimented at 500 g for 5 minutes and 

a fraction was cultured in fresh media. Cells were kept in culture for a maximum of 30 

passages. Resuspended cells were counted by mixing 1:1 with 0.02 % trypan blue in a 

BioRad (Hercules, CA, USA) TC20 cell counter. Cell line authenticity was confirmed 

by STR genotyping. The absence of Mycoplasma sp. contamination was determined 
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using a Lonza (Basel, Switzerland) MycoAlert system. All cell lines used are listed in 

Supplementary Table 1. 

 

Cell viability 

Cell viability was assessed using CellTiter-Glo (Promega, Madison, Wisconsin, USA). 

Briefly, for CellTiter-Glo measurement, 1,000 cells were seeded in white, flat-bottom, 

96-well plates (Corning, Corning, NY, USA). After 24 hours, drugs were added to the 

medium and cells were incubated for 72 hours. CellTiter-Glo luminescent reagent was 

added according to the manufacturers protocol, and the luminescence signal measured 

on a Glowmax-Multi Detection System (Promega). 

 

Colony formation assays 

Flat and transparent 24-well plates were incubated with 0.1% poly-D-lysine for 30 

minutes, washed twice with PBS and then left open to dry under UV radiation for 30 

minutes. Depending on the individual cell type and growth rate, 1000-2000 single cells 

have been plated in each well and were able to attach for 24 h. Experiments were 

performed in triplicates with either 48 h treatment of elimusertib at the cell lines 

corresponding IC50 or DMSO control. After 48 h, the media was removed and the wells 

were carefully washed twice with cell culture medium and then cultured in drug-free 

media for 7-10 days. Resultant colonies were fixed with 1% PFA and stained with 

crystal violet. 

 

Western Immunoblotting 
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Whole-cell protein lysates were prepared by lysing cells in Radioimmunoprecipitation 

assay buffer (RIPA) supplemented with cOmplete Protease inhibitor (Roche, Basel, 

Switzerland) and PhosphStop (Roche). Protein concentrations were determined by 

bicinchoninic acid assay (BCA, Thermo Fisher). 10 µg of protein were denatured in 

Laemmli buffer at 95 °C for 5 minutes. Lysates were loaded onto 16%, or 10% Tris-

Glycin (Thermo Fisher) gels for gel electrophoresis depending on the protein sizes of 

interest. Proteins were transferred onto Polyvinylidenfluorid (PVDF) membranes 

(Roche), blocked with 5% dry milk or 5% bovine serum albumin for 1 hour and 

incubated with primary antibodies overnight at 4°C, then secondary antibodies for 1 

hour at room temperature. Chemiluminescent signal was detected using Enhanced 

chemiluminescence (ECL) Western Blotting Substrate (Thermo Fisher) and a Fusion 

FX7 imaging system (Vilber Lourmat, Marne-la-Vallée, France). Quantification was 

performed with ImageJ. 

 

Immunofluorescence staining 

Cells were grown at the desired confluency on glass slides with an 8 well flexiPERM 

silicone grid (Sarstedt, 94.6032.039) for 24h and directly processed (for R-loop 

quantification) or treated with 20 nM elimusertib for 48 h (micronuclei quantification). 

Cells were washed with PBS three times and fixed for 10 minutes with 3.7 % 

paraformaldehyde, washed with PBS three times and permeabilized with PBS 

containing 0.1% Triton-X100. For R-loop immunofluorescence cells were blocked for 

30 minutes with 10% FCS in PBS-T (0.2% Tween-20 in PBS), incubated overnight at 

4ªC with the primary antibody (Anti-DNA-RNA Hybrid Antibody, clone S9.6; Merck 

Millopore MABE1095), washed three times with PBS-T (0.05% Tween-20 in PBS), 

incubated for 1 hour in the dark at room temperature with the secondary antibody 
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(Dianova, 715-096-150). After removal of the 8 well silicone grid, the glass slide was 

washed three times with PBS-T (both R-loop and micronuclei quantification).  The 

glass slide was covered with DAPI-containing mounting media (Vectashield, Vec-H-

1000) and mounted with a cover slip. Cells were imaged using an ECHO Revolve 

microscope and quantified using ImageJ. 

 

Fluorescence-activated cell sorting (FACS) 

Cells were grown in the presence of drug or vehicle (DMSO) for 72h prior to sample 

preparation for flow cytometry. For cell cycle analysis, cells were incubated with 5-

Ethynyl-2´-deoxyuridine (EdU) for 2 hours right before fixation and fluorescent 

labeling, following the instructions provided in the kit Click-IT EdU Alexa Fluor 488 

Flow Cytometry Assay kit (Thermo Fisher). For DNA damage analysis, terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed using 

the APO-BrdU TUNEL Assay Kit (Thermo Fisher), according to the manufacturer’s 

descriptions. Stained cells were measured on a BD LSR Fortessa flow cytometer (BD 

Biosciences, Franklin Lakes, NJ, USA) and analyzed using FlowJo (v 10.8.1). 

 

Patient-derived xenograft (PDX) treatment 

The establishment of PDX models was conducted as previously described (34) in 

collaboration with Experimental Pharmacology & Oncology GmbH (EPO, Berlin, 

Germany), from patients accepted for treatment in Charité University Medicine. All 

experiments were conducted according to the institutional animal protocols and the 

national laws and regulations. Tumor fragments from patients were serially transplanted 

into either Crl:NMRI-Foxn1
nu mice (Charles River, Wilmington, MA, USA) 
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or NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac mice (Taconic, Rensselaer, NY, USA) for the 

establishment of the PDX up to passage 3-9, when the experiment was performed.. 

Tumor growth was monitored with caliper measurements. Tumor volume was 

calculated with the formula length x width2 / 2.  PDX were serially transplanted in mice 

at least three times prior to the experiments. Mice were randomized into four groups 

with at least 3 mice to receive treatment. For the elimusertib study, mice were 

administered 40 mg/kg body weight on a 3 days on/4 days off regime twice daily 

(orally). Elimusertib was dissolved in 60% polyethylene glycol 400, 10% ethanol and 

30% water to a 4mg/ml solution, the same solution without compound was used as 

vehicle control. Mice were sacrificed by cervical dislocation once the tumor volume 

exceeded 1.500 mm3 or body weight loss was higher than 20%.  

The PDXs used in this study are available for the scientific community under a material 

transfer agreement with Experimental Pharmacology & Oncology GmbH (EPO, Berlin, 

Germany). Currently, 28 out of 32 PDXs are part of the international PDX repository 

ITCC-P4. 

 

Immunohistochemistry stainings 

Paraffin sections of 1 µm thickness were cut, dewaxed and subjected to a heat-induced 

epitope retrieval step. Endogenous peroxidase was blocked by hydrogen peroxide prior 

to incubation with anti-Ki67 (clone D2H10, Cell Signaling Technologies), anti-Histone 

H3-S10 (polyclonal rabbit, Abcam #47297) or anti-γH2AX (polyclonal rabbit, Abcam 

#229914) followed by incubation with EnVision+ HRP-labelled polymer (Agilent). For 

visualization, 3,3'-diaminobenzidine (DAB) as chromogen was used. For detection of 

cleaved caspase3, anti-clCasp3 (clone 5A1E, Cell Signaling Technologies) was used 

followed by incubation with secondary antibody (biotinylated donkey anti-rabbit) and 
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alkaline phosphatase-labelled streptavidin (Agilent). RED was used as chromogen 

(Agilent). Nuclei were stained with hematoxylin (Merck) and slides were coverslipped 

in glycerol gelatine (Merck). Multispectral images were acquired using a Vectra® 3 

imaging system (Akoya Biosciences). The QuPath software (version 0.3.2) was used for 

cell segmentation as well as quantification. 

 

Cell line and PDX genomic analysis 

Cell line mutation data was obtained from the online public dataset DepMap 

(https://depmap.org/portal/, packages Copy Number Public 21Q2 and Mutation Public 

21Q2).  

WES sequencing from the Sarcoma PDX samples was performed using NEBNext Ultra 

II FS DNA library Kit for Illumina (New England Biolabs), SureSelectXT HS Target 

Enrichment System for Illumina Paired-End Multiplexed Sequencing Library For 

Illumina Multiplexed Sequencing Platforms (Agilent), and TruSeq Stranded mRNA 

Library Prep (New England Biolabs), respectively, following the protocol provided by 

the manufacturers. Sequenced reads were trimmed using TrimGalore (v0.6.4_dev) and 

aligned to a merged genome consisting of hs37d5 and mm10 using Burrows–Wheeler 

Aligner (BWA)-MEM (v.0.7.17). Duplicate reads were marked using UMI-tools 

(v.1.0.1). Base qualities were recalibrated using GATK4 suite (v4.1.4.1). Single 

nucleotide variants were identified following the GATK4 Somatic short variant 

discovery (SNVs + Indels) best practice workflow by calling GATK4/Mutect2 

(v.4.1.4.1) in tumor-only mode with allele frequencies from gnomADa s germline-

recource. Candidate variants were further filtered following the workflow and variants 

were annotated using SnpEff (v4.3t) and SnpSift (v4.3t). Copy number alterations were 

called following the CNVkit (0.9.10.dev0) copy number calling pipeline. Relative copy 
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number (rCN) ratios were converted to ploidy adjusted absolute copy number (paCN) 

using following formula: 

𝑝𝑎𝐶𝑁 = 2(𝑟𝐶𝑁+𝑙𝑜𝑔2(𝑃𝑙𝑜𝑖𝑑𝑦)) 
Ploidy values were derived from the PureCN  (v.2.1.7) R package. Gains and losses are 

defined as paCN > log2(3/2) and paCN < log2(1/2), respectively.  

Neuroblastoma PDX sequencing data and variant calls were downloaded from the IMI2 

ITCC-P4 project (https://www.itccp4.eu/). Oncoplots were drawn using the R package 

maftools (v 2.12.0). 

 

Statistical analysis 

All statistical tests were done using GraphPrism9 or R. 

 

Data availability: 

The data generated in this study are available upon request from the corresponding 

author. Restrictions apply to the availability of data that does not comply with patient 

privacy requirements. Sarcoma PDX whole exome sequencing reads have been 

reposited to the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/) 

under accession number EGAS50000000048. 

 

Ethics statement 

The in vivo experiments were conducted in accordance with the German Animal 

Welfare Act and have been approved by an Institutional Animal Care and Use 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/m
c
t/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
5
8
/1

5
3
5
-7

1
6
3
.M

C
T

-2
3
-0

0
9
4
/3

3
9
6
8
6
0
/m

c
t-2

3
-0

0
9
4
.p

d
f b

y
 U

n
iv

e
rs

ity
 o

f Z
u
ric

h
 u

s
e
r o

n
 0

9
 J

a
n

u
a

ry
 2

0
2

4



15 
 

Committee with regards to national laws and regulations (Landesamt für Gesundheit 

und Soziales, LaGeSo Berlin, Germany). 

 

Results 

Elimusertib treatment affects survival of pediatric solid tumor cell lines 

To study the therapeutic potential of elimusertib inhibition in pediatric solid tumors, we 

treated 36 cell lines derived from several pediatric tumors, including Ewing’s sarcoma 

(EWS), alveolar (ARMS) and embryonal rhabdomyosarcoma (ERMS) and high-risk 

neuroblastoma with and without MYCN amplification (MNA NB vs. NMNA NB), with 

the ATR inhibitor elimusertib and measured their survival over time (Fig. 1a-c, 

Supplementary Fig. 1a-y). Cells showed a wide range of response, with inhibitory 50% 

concentrations (IC50) values ranging from 2.687 to 395.7 nM (Supplementary Table 1). 

These concentrations are well below plasma concentrations achievable in human 

patients (35), suggesting that elimusertib may exert similar anti-tumor effects in vivo. 

Compared to non-transformed cell lines BJ and RPE cells, elimusertib inhibited cell 

viability at lower concentrations in most cancer cell lines (Fig. 1d). In line with previous 

reports testing other ATR inhibitors (24,26,29), cell lines derived from Ewing sarcoma, 

MYCN-amplified neuroblastoma and alveolar rhabdomyosarcoma were (significantly) 

more sensitive to ATR inhibition than control cell lines, suggesting a therapeutic 

window may exist for elimusertib in these pediatric solid tumors. 

In addition, we performed colony formation assays in a subset of pediatric cancer cells 

that showed a reduced ability of survival and proliferation in the elimusertib treated 

group vs. DMSO control (Fig. 1e-f). 
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Elimusertib treatment leads to DNA damage in pediatric solid tumor cell lines 

ATR is a key regulator of replication stress-induced DNA damage (18,36,37). To 

investigate the effects of ATR inhibition in pediatric cancer cell lines, we measured 

DNA damage accumulation in response to elimusertib treatment in a subset of cell lines. 

Micronucleation is an indicator of genomic instability (38). In response to elimusertib, 

cell lines showed higher rates of micronucleation (Fig. 1g-h), indicating the presence of 

DNA damage. Co-staining with TdT-dependent UTP nicked-end labelling (TUNEL) 

and propidium iodide indicated an increase in the fraction of cells with fragmented 

DNA in cells incubated with elimusertib, suggesting an accumulation of unrepaired 

damaged DNA and apoptotic DNA fragmentation (Fig. 1i-j), which is in line with 

previous reports (26,29,31,35,39). Furthermore, we observed an increase of sub-G1 

fragments upon treatment with elimusertib, emphasizing the ability to induce cell death 

in treated cells (Supplementary Fig. 2a-b). Because ATR is crucial for the intra-S and 

G2/M checkpoint activation (40-42), we examined cell cycle progression in response to 

elimusertib. We pulse-labelled replicating DNA with 5-Ethinyl-2'-Desoxyuridin (EdU) 

and stained all DNA with propidium iodide in cells incubated in the presence of 

elimusertib. In all cell lines tested, elimusertib led to a reduction in the fraction of cells 

in S-phase, consistent with a repression of the intra-S checkpoint. In all cell lines but 

one (IMR-5/75), we observed an increase in cells in G2/M (Fig. 1k-l).  To assess 

whether cells accumulated in mitosis, consistent with a G2/M checkpoint suppression, 

we measured Histone 3 phosphorylation at Serine 10, a marker specific for mitosis (43). 

After incubation in the presence of elimusertib, we did not observe a consistent increase 

in IMR-5/75 (neuroblastoma) and TC-253 (Ewing sarcoma) cells, suggesting cell 

context dependent cell cycle disruption in response to elimusertib (Supplementary Fig. 

3a-b). We next evaluated the effect of elimusertib on replication stress by measuring 
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RPA32 T21 phosphorylation, in cells incubated with elimusertib. RPA32 

phosphorylation, a marker of single-stranded DNA, was increased in response to 

elimusertib (Supplementary Fig. 3a-b). Taken together, this suggests that elimusertib 

prevents repair of replication stress-associated DNA damage, resulting in further 

genomic instability and then ultimately apoptosis in these pediatric solid tumor cell line 

models. 

 

Fusion oncoprotein expression and high MYCN levels are associated with elimusertib 

sensitivity 

Because ATR is key in repairing replication stress-induced DNA damage, we tested 

whether cell lines with varying levels of ATR-mediated replication stress response 

signaling would differ in their sensitivity to elimusertib. For this purpose, we assessed 

the abundance of R-loops, a nucleic acid structure consisting of and RNA:DNA hybrid 

and single stranded DNA which has been implicated in genomic instability as well as 

replication stress and is being discussed as mediator for treatment susceptibility in 

cancer (44,45). In contrast to previous reports, no positive correlation was observed 

between the abundance of R-loops and elimusertib sensitivity (Supplementary Fig. 4a-

c). Sensitivity to ATR inhibitors can be influenced by genetic aberrations frequent in 

cancers, such as TP53 or ATM loss, PGBD5, MYC(N) expression, or fusion 

oncoproteins such as EWS-FLI1 and PAX3-FOXO1 (22,24-27,29,46). We assessed the 

presence of frequent genetic alterations in pediatric tumors (47) as well as markers that 

cause genetic vulnerability to ATR inhibition (22,25,27,28,48,49) in our cell lines using 

publicly available datasets (50). In line with previous reports (28), the presence of 

MYCN amplifications, both on ecDNA or as homogenously staining regions (51,52), in 

NB cell lines, expression of fusion oncoproteins such as EWS-FLI1 or PAX3-FOXO1 
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(25,29) and TP53 deficiency (22) were associated with higher elimusertib sensitivity 

(Fig. 1m). Thus, the presence of known biomarkers of ATR inhibitor sensitivity is also 

associated with elimusertib sensitivity in pediatric tumor cell lines and may be suitable 

for patient selection in current and upcoming clinical trials.  

 

A preclinical trial of elimusertib in patient-derived xenografts demonstrates clinically 

relevant response in a large subset of pediatric solid tumors 

Encouraged by the results obtained in vitro, we sought to test the preclinical anti-tumor 

activity of elimusertib in vivo in mice harboring patient-derived xenograft models 

(PDX) of pediatric solid tumors (Fig. 2a). We selected a cohort of PDX derived from 8 

EWS, 4 ERMS, 7 ARMS, 4 MNA-NB, 5 NMNA-NB, 3 osteosarcomas (OS) and one 

CIC-DUX fusion gene expressing undifferentiated sarcoma. Within each entity, the 

cohort comprised various sites of origin, primary or relapse status, histopathological 

gradings and clinical stagings (Supplementary Table 2). In total, we treated 195 mice 

(median 3 mice per PDX model and treatment arm) and 32 PDX models derived from 

patients treated at the Charité – Universitätsmedizin Berlin and the University 

Children's Hospital, Zurich (53). Some PDX were derived from the same tumors but 

collected before and after treatment (EWS_3a and EWS_3b) or sequential relapses 

(ERMS_2a, ERMS_2b and ERMS_2c) (Supplementary Table 2). In order to closely 

mirror the setup of a clinical trial, we treated mice using the same regimen currently 

used in clinical trials, i.e. elimusertib at 40 mg/kg body weight twice daily per oral 

gavage, on a 3-days on/4-days off schedule for 28 days (Fig. 2a). According to the 

Response Evaluation Criteria in Solid Tumours (RECIST) (54,55), two of the PDX 

models achieved a complete response (CR), two PDX had a partial response (PR), 14 

PDX were considered as stable disease (SD), and 16 PDX were classified as progressive 
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disease (PD, Fig. 2b-d, Supplementary Table 3). In all cases, single agent elimusertib 

treatment was sufficient to significantly delay tumor growth, compared to vehicle-

treated control mice (Supplementary Fig. 5a-af). Consistent with our previous work 

using AZD6738 (29) mice harboring PDX derived from ARMS showed the most 

pronounced response, with only one out of the seven ARMS PDX models classified as 

progressive disease after elimusertib treatment (Supplementary Fig. 5a-g). ERMS 

(Supplementary Fig. 5h-k) and MNA NB PDX (Supplementary Fig. 5w-aa) also 

showed a good response, with only one and two models demonstrating a progressive 

disease, respectively. Interestingly, the ERMS model derived from a later relapse 

showed a better response than the models derived from the same patient at an earlier 

timepoint (ERMS_2a and EMRS_2b, respectively; Fig. 2b-c, Supplementary Fig. 5i-k), 

implicating that treatment-associated tumor evolution may have enhanced ATR 

inhibitor sensitivity. Toxicity, assessed by body weight loss over time, was minimal 

during treatment, indicating a good tolerability of the drug in the given regimen 

(Supplementary Fig. 6a-af). Together, elimusertib monotherapy has clinically relevant 

anti-tumor activity in pediatric solid tumor models. 

 

Elimusertib treatment extends progression-free survival in pediatric solid tumor 

models 

In order to further evaluate the preclinical activity of elimusertib, we assessed the 

progression-free survival (PFS) of PDX after elimusertib treatment. Overall, elimusertib 

extended the median PFS from 7 to 20 days across PDX models from different tumor 

entities (Fig. 3a). The most pronounced extension of PFS was observed for ARMS (Fig. 

3b, median PFS from 9 days to the end of experiment), followed by ERMS (Fig. 3c, 

median PFS from 5 to 26 days). Median PFS increased from 7 to 14 days for EWS (Fig. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/m
c
t/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
5
8
/1

5
3
5
-7

1
6
3
.M

C
T

-2
3
-0

0
9
4
/3

3
9
6
8
6
0
/m

c
t-2

3
-0

0
9
4
.p

d
f b

y
 U

n
iv

e
rs

ity
 o

f Z
u
ric

h
 u

s
e
r o

n
 0

9
 J

a
n

u
a

ry
 2

0
2

4



20 
 

3d), from 6 to 12 days for MNA NB (Fig. 3e), 7 days to 17 for NMNA NB (Fig. 3f), 9 

to 20 days for OS (Fig. 3g) and 5 to 12 days for the CIC-DUX model (Fig. 3h). 

Furthermore, elimusertib prolonged overall survival across PDX from all tumor entities 

with a median overall survival of 19 days vs. 31 days in the untreated and elimusertib-

treated group, respectively (Supplementary Figure 7a). For some tumor entities, such as 

ARMS, ERMS, NMNA NB, and OS, the overall survival rate in the treatment group 

was significantly higher than the control group at 30 days, exceeding 75% overall 

survival (Supplementary Fig. 7b, c, f, g). MNA NB and EWS also showed significantly 

prolonged overall survival, whereas the overall survival of the CIC-DUX models was 

not statistically significant (Supplementary figure 7d, e, h). Thus, elimusertib 

monotherapy delays tumor growth, which results in pronounced increases in PFS and 

overall survival in diverse pediatric solid tumor models. 

 

Elimusertib leads to reduced proliferation in pediatric solid tumor PDX  

To characterize the effect of elimusertib treatment on PDX, we performed 

immunohistochemical (IHC) staining of molecular markers of cell proliferation, DNA 

damage and apoptosis in 21 of the 32 PDX models at the end of elimusertib treatment 

(Supplementary Fig. 8, 9, 10, 11 & 12; Supplementary Table 4, 5 & 6). Baseline 

expression of these markers was not associated with differences in elimusertib response 

(Supplementary Fig. 13a, c-d). Only high pre-treatment Histone H3 phosphorylation 

(pHH3) expression, indicative of mitotic cells, was slightly associated (not statistically 

significant) with good PDX response (Supplementary Fig. 13b). The fraction of Ki-67 

positive cells, an indicator of proliferating cells, in PDX was significantly lower in 

elimusertib- than vehicle-treated PDX (Fig. 4a-b), in line with the reduced cell 

proliferation observed after elimusertib treatment in vitro (Fig. 1). Notably, favorable 
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response to elimusertib treatment, as defined using the RECIST criteria, was associated 

with low fractions of Ki-67 expressing cells after treatment (overall responding PDX, 

OR, composed of SD, PR and CR, Fig. 4c). In contrast, in poorly responding PDX, i.e. 

with progressive disease (PD), differences in Ki-67 staining after elimusertib treatment 

were not significant (Fig. 4d-i). Similarly, Histone H3 phosphorylation, a marker of 

mitosis, was lower after elimusertib treatment in 8 out of 9 PDXs classified as 

responsive (OR, Supplementary Fig. 12a-h). Thus, reduced cell proliferation is more 

pronounced in PDXs responsive to elimusertib. In addition, PDXs were stained for 

histone variant γH2A.X Ser139 phosphorylation (yH2AX), a marker of DNA damage, 

and cleaved caspase-3 (Clc3), a marker of apoptosis. In contrast to our in vitro results, 

no significant differences in H2A.X Ser139 phosphorylation or caspase-3 cleavage were 

observed in PDXs treated with elimusertib compared to vehicle-treated PDXs 

(Supplementary Fig. 12i-x). This may be because DNA damage induction and apoptosis 

precede reduced cell proliferation in tumors, hence was not detectable at the end of the 

treatment period. Thus, elimusertib leads to reduced Ki-67 expression, indicative of 

altered tumor cell proliferation, which also positively correlated with tumor response in 

vivo.  

 

Elimusertib shows stronger anti-tumor effects than some standard of care treatment 

regimens in a subset of preclinical pediatric solid tumor models 

Pediatric solid tumors are currently treated with a combination of chemotherapeutic 

agents. In order to evaluate the clinical potential of elimusertib, we aimed to compare 

the anti-tumor effects of elimusertib in our cohort of PDXs with the effects of current 

SoC agents. Despite minor differences in exact composition, most pediatric tumors in 

Europe and the United States are treated in the first line with a combination of 
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topoisomerase inhibitors, mitotic inhibitors, antimetabolites, intercalating and alkylating 

agents (56-59). The response to the abovementioned chemotherapeutic agents was 

evaluated using modified RECIST criteria. We here compared the responses to the SoC 

chemotherapeutics with the response to elimusertib (Fig. 5a). Notably, most PDXs were 

relatively unresponsive to SoC chemotherapeutics as monotherapy, which was not 

associated with prior exposure to these treatments in patients from which PDX were 

derived. Intriguingly, some of the PDXs that were relatively chemo-resistant responded 

well to elimusertib, indicating that patients that develop resistance to current SoC 

treatments may still benefit from elimusertib treatment (Fig. 5). We next compared the 

changes in PFS following elimusertib treatment to that of SoC chemotherapeutic agents 

(Fig. 5b-f). Strikingly, elimusertib prolonged the PFS of all ARMS and NMNA NB 

PDX to a greater extent than any of the SoC agents (Fig. 5b, f; Supplementary Table 7). 

A similarly pronounced prolonged PFS advantage was observed compared to most 

chemotherapeutic agents tested in ERMS and MNA NB PDX (Fig. 5c, e; 

Supplementary Table 7). Only EWS PDX responded similarly to elimusertib as they did 

to chemotherapy (Fig. 5 d; Supplementary Table 7). Thus, our in-depth preclinical 

response evaluation suggests that elimusertib could have clinically relevant anti-tumor 

effects in many pediatric tumor entities and may in some cases be superior to currently 

used treatment options. 

 

Standard of care treatment-associated genomic evolution reveals candidate 

alterations that render PDXs susceptible to ATR inhibition 

As shown in vitro (Fig. 1m) and suggested by previous reports (22-28,30), distinct 

molecular alterations may predict good response to ATR inhibitors. We genetically 

characterized a subset of the PDX models using whole exome sequencing. None of the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

a
c
rjo

u
rn

a
ls

.o
rg

/m
c
t/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
5
8
/1

5
3
5
-7

1
6
3
.M

C
T

-2
3
-0

0
9
4
/3

3
9
6
8
6
0
/m

c
t-2

3
-0

0
9
4
.p

d
f b

y
 U

n
iv

e
rs

ity
 o

f Z
u
ric

h
 u

s
e
r o

n
 0

9
 J

a
n

u
a

ry
 2

0
2

4



23 
 

genetic alterations identified in our cohort were associated with therapy response across 

all or within different entities (Fig. 6a-f). Thus, we focused our analysis on genetic 

alterations in otherwise near-isogenic PDX pairs derived from the same patients with 

particularly strong elimusertib response differences (Fig. 6g-h). For example, three 

ERMS PDX (ERMS_2a-c) derived from subsequent relapses responded very differently 

to elimusertib, with the best response observed in the PDX derived from the latest 

relapse (ERMS_2c, Fig. 6b, Supplementary Fig. 5i-k). Intriguingly, mutations in 

BRCA1 and FGFR4 were only detected in the responsive PDX (ERMS_2c) and not in 

the two PDX derived from earlier clinical timepoints (ERMS_2a+b), suggesting that 

these mutations occurred later during patient treatment. BRCA1 deficiency has been 

implicated in ATR inhibitor response in the past (60,61), suggesting that the improved 

elimusertib response in the PDX may in part be due to the de novo BRCA1 mutation.  

Furthermore ERMS_2b acquired a mutation in SETD2 during SoC treatment, which has 

been shown to enhance sensitivity to ATR inhibition in other tumor entitites (30). 

Additionally, we examined two EWS PDX derived from the same patient (EWS_3a+b). 

The first model (EWS_3a) was established at diagnosis, whereas the second PDX 

(EWS_3b) was established from the same patient after neo-adjuvant chemotherapy. 

Strikingly, the second sample responded better to elimusertib (Fig. 6c, Supplementary 

Fig. 5n-o), indicating that changes during neo-adjuvant chemotherapy may have 

enhanced susceptibility to elimusertib. Interestingly, many focal oncogene 

amplifications (e.g. MYC, CCND1, MYCN, MDM2) were detectable in EWS_3b but not 

EWS_3a (Fig. 6c). In line with previous reports (27,28) and our in vitro data (Fig. 1m), 

MYCN was one of the oncogenes mostly amplified in the responsive PDX (Fig. 6a,c). 

Gene amplifications can arise as a result of genomic instability and can occur in linear 

or extrachromosomal form (i.e. ecDNA). This raises the possibility that genomic 
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instability and/or the type of gene amplification may influence ATR inhibitor 

sensitivity. 

 

Discussion 

Through an in-depth preclinical assessment of elimusertib’s anti-tumor activity in a 

broad spectrum of patient-derived pediatric solid tumor models in vitro and in vivo, we 

here demonstrate that pharmacological ATR inhibition represents a therapeutic strategy 

with high clinical potential. 

We and others have previously shown that diverse ATR inhibitors exhibit preclinical 

activity against a subset of ARMS, rhabdoid tumors, OS, EWS, MYCN-amplified 

neuroblastomas and medulloblastomas (24-26,28,29,62), but most of these studies only 

tested a small number of preclinical models and used ATR inhibitors that are currently 

not being clinically developed for the use in pediatric patients. In line with our results, 

the anti-tumor activity of different clinical-stage ATR inhibitors as monotherapy and in 

combination with other agents has been widely recognized in cancers in adults 

(21,22,26,39,49,60,63-65). 

In contrast to most ATR inhibitors, elimusertib is still in clinical development both for 

adult and pediatric patients (NCT04095273, NCT04616534, NCT04514497, 

NCT05071209). Elimusertib’s activity in most pediatric tumor entities, however, has 

not been assessed comprehensively to date. In an attempt to fill this gap of knowledge, 

we here performed a preclinical trial using state-of-the art preclinical patient-derived 

xenografts and broad molecular characterizations, similar to those performed by 

research consortia like the Pediatric Preclinical Testing Consortium. Compared to 

previous studies examining the anti-tumor activity ATR inhibitors in small numbers of 

in vivo models, our study provides insights on the inter-tumor response heterogeneity. 
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The response heterogeneity observed in our study mirrors that of many clinical trials for 

small molecules, suggesting that preclinical trials of this scale may predict clinical 

responses more closely than preclinical testing using low number of in vivo models. 

High costs of preclinical trials at this scale remain one of the main limitations of such 

studies. However, we propose that preclinical trials at similar scale as the one performed 

here should be considered as a standard for preclinical assessments in pediatric 

oncology.  

Previous preclinical trials for various therapeutic interventions conventionally did not 

compare the effects of the tested intervention to standard of care (SoC) drugs. In fact, 

very little preclinical data exists for the anti-tumor efficacy of SoC drugs in preclinical 

patient-derived pediatric tumor models. This is mainly due to the fact that such models 

were not available to the same extent at the time SoC drugs were first selected for 

clinical testing. This raises several important questions. Even though many of the same 

SoC drugs are now considered the clinical gold standard for the treatment of different 

pediatric patients suffering from molecularly diverse tumor entities, we currently do not 

know how these SoC drugs perform preclinically. This lack of a true benchmark in 

preclinical trials creates problems when evaluating the efficacy of new treatment 

modalities. What anti-tumor effect should we consider as a positive result without such 

a benchmark? Do we currently set the bar too low or too high for new treatment 

modalities to be considered successful preclinically? To address these important 

limitations, we here compared the anti-tumor activity of elimusertib to that of SoC 

monotherapy in the same PDX models. This revealed that some SoC drugs perform 

surprisingly poor in many PDX when assessing response using clinically relevant read 

outs and raises the question whether the same drugs would pass the threshold to be 

approved for clinical testing nowadays. We here compared the response to SoC drugs to 
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that of elimusertib, a small molecule inhibitor that very recently entered clinical testing 

in pediatric patients (NCT05071209). Notably, we observe that elimusertib showed a 

comparable and in some entities even a superior anti-tumor effect than SoC agents, 

particularly in ARMS. This is in line with our previous reports describing the exquisite 

sensitivity of ARMS cells to ATR inhibition, which at least in part seem due to PAX3-

FOXO1-induced replication stress (29). We propose that based on both our previous 

and current studies on ATR inhibitors, patients suffering from ARMS should be 

designated as a high-priority patient group in which ATR inhibitors should be tested 

clinically.  

Biomarkers predicting clinical response to DDR inhibitors including ATR inhibitors are 

still scarce. One of the most widely used molecular response predictor used for ATR 

inhibitors is ATM deficiency (22). Although we cannot exclude that ATM was 

epigenetically or otherwise compromised, we did not observe an association between 

the molecular ATM status and sensitivity of PDX models to elimusertib (Fig. 6a-f). Our 

findings stand in line with current clinical trial data showing that a large fraction of 

patients with ATM deficiency does not respond to ATR inhibitors (35). This suggests 

that other factors contribute to ATR inhibitor sensitivity. MYCN has been proposed to 

induce replication stress and sensitize cells to ATR inhibition (26). In line with these 

reports, MYCN-amplified neuroblastoma PDX were amongst the most sensitive to 

elimusertib. We previously demonstrated that PAX3-FOXO1 expression can sensitize 

cells to ATR inhibition independent of MYCN expression (29). This raised the question 

if gene amplification or the type of amplification rather than high oncogene expression 

may affect ATR inhibitor response. In line with our previous reports, PDX derived from 

ARMS expressing PAX3-FOXO1, were the most sensitive to elimusertib. Others have 

reported that fusion oncogene expression in general can sensitize cells ATR inhibition 
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(25,46). In our preclinical trial, however, neither EWS-FLI1-expressing EWS PDX nor 

CIC-DUX-expressing undifferentiated sarcoma PDX models responded particularly 

well to elimusertib. The lack of additional CIC-DUX-expressing undifferentiated 

sarcoma models limits definitive conclusions on the responsiveness of these tumors to 

elimusertib. As for EWS, we included 8 PDX models in our preclinical trial, 5 of which 

progressed during elimusertib treatment. This is in stark contrast to the reported 

sensitivity of EWS cells to ATR inhibition (25,46). We cannot exclude, however, that 

the previously observed exceptional sensitivity of EWS was specific to the ATR 

inhibitors tested in these studies and that the chemical or pharmacologic properties of 

elimusertib influence its activity on EWS cells. Thus, we here provide evidence that 

ARMS and MYCN-amplified neuroblastomas are most sensitive to elimusertib both in 

vitro and in vivo, suggesting patients suffering from these tumor entities may profit 

from elimusertib treatment.  

In summary, elimusertib is active against preclinical patient-derived pediatric solid 

tumor models. This data supports the initiation of clinical trials with elimusertib in 

patients with MYCN-amplified neuroblastomas and ARMS, and also provides evidence 

that some tumor entities may not respond as well to elimusertib as previously expected. 
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Figure Legends 

 

Figure 1. Elimusertib shows anti-tumor activity in a broad spectrum of pediatric 

cancer cell lines. (a-c) Dose-response curves of the cell viability for ARMS (a), ERMS 

(a), EWS (b), MNA NB (c) and NMNA NB cell lines (c) treated with the ATR inhibitor 

elimusertib compared to non-cancer cell lines BJ and RPE (n = 3; 50% inhibitory 

concentrations, IC50, and area under the curve, AUC, values are listed in Supplementary 

Table 1). (d) AUC corresponding to the graphs in (a-c) (unpaired, two-sided Student’s t 

test, P= 0.0096, 0.0410, 0.0761, 0.1488, 0.8260 for MNA NB vs Control, EWS vs 

Control, ARMS vs Control, NMNA_NB vs Control, ERMS vs Control, respectively). 

(e) Representative pictures of a colony formation assay in 5838 cells treated at 

corresponding IC50 for 48 h and cultivated for 7 days. (f) Bar plot showing decrease in 

colony formation upon elimusertib treatment at the corresponding IC50 for 48 h and 

cultivation for 7-10 days (P = 0.0022, 0.0821, 0.4753, 0.0028, 0.0786, 0.0121, 0.0466, 

0.0124, 0.1685, 0.2402,  respectively; n = 3). (g) Representative photomicrographs of 

micronuclei (white arrow) in cells treated with elimusertib. (h) Fraction of 

micronucleated cells after treatment with elimusertib (20 nM) for 72h (P = 0.0242, 

0.0014, 0.0033, 0.0002, 0.0108, 0.0065, 0.520, 0.0061, 0.0312, 1.30x10-5, 0.0072, 

0.0008, 0.0014, 0.0026, 0.0088, 0.1448, 0.0013, 0.3740, 0.0030, 0.0042, 0.0008, 

respectively; n = 3, with 50 cells per replicate). (i) Representative gating for TUNEL 

labeling in 5838 cells. (j) Quantification of TUNEL signal in a set of pediatric solid 

tumor cell lines treated with elimusertib (20 nM) for 72h. (P = 2.08x10-5, 0.0232, 

0.0002, 0.0018, 0.0045, 6.38x10-7, respectively; n = 3). (k) Representative gating for 

EdU and PI co-staining in 5838 cells. (l) Quantification of the fraction of cells in each 

cell cycle phase in a set of pediatric solid tumor cell lines after elimusertib treatment (20 
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nM) for 72h (n = 3; unpaired, two-sided Student’s t test; error bars represent standard 

deviation). (m) Table of mutations (incl. translocations, single nucleotide variants, copy 

number alterations) affecting genes associated with ATR inhibitor sensitivity in a subset 

of cell lines tested. 

 

Figure 2. Elimusertib treatment induces heterogeneous response in a large cohort 

of patient-derived xenografts of pediatric solid tumors. (a) Schematic representation 

of the preclinical study in PDX models. A total of 39 PDX models were established 

from 134 patients. 32 of those PDXs received 40 mg/kg body weight elimusertib twice 

daily per oral gavage, on a 3 days-on/4 days-off schedule. (b) Dot plot showing the 

relative tumor volume at the end of the treatment for all PDXs treated with elimusertib 

or vehicle control (n and P values are listed in Supplementary Table 3). (c) Dot plot 

showing the relative tumor volume at the end of the treatment for all tumor entities 

treated with elimusertib or vehicle control (n and P values are listed in Supplementary 

Table 3). (d) Waterfall plot representing tumor volume change in mice receiving 

elimusertib. Tumors were classified according to the RECIST criteria (55) as 

progressive disease (red), stable disease (yellow), partial response (light green) and 

complete response (dark green). For statistical comparison an unpaired, two-sided 

Student’s t test was performed; error bars represent standard deviation.  

 

Figure 3. Elimusertib treatment extends the progression-free survival of 

preclinical pediatric solid tumor models. (a-h) Kaplan Meier curves showing the 

progression-free survival, defined as time until the tumor was classified as progressive 

disease, PD, according to the RECIST criteria, in mice treated with elimusertib (red) or 

vehicle (black), across tumor types (a, ntotal = 195,  P < 0.0001), ARMS (b, ntotal = 44, P 
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< 0,0001), ERMS (c, ntotal = 22, P = 0.0001), EWS (d, ntotal = 53, P = < 0.0001), MNA 

NB (e, ntotal = 30, P = 0.0064), NMNA NB (f, ntotal = 23, P < 0.0001), OS (g, ntotal = 18, 

P = 0.0033) and CIC-DUX sarcoma (h, ntotal = 5, P = 0.0389). Log-rank tests were 

performed for statistical comparison. 

 

Figure 4. Elimusertib reduces the proliferation rate in PDX models of pediatric 

solid tumors. (a) Exemplary H&E and Ki-67 stainings of EWS, ARMS, ERMS, MNA 

NB and NMNA NB PDXs treated with elimusertib or vehicle control. (b-i) changes in 

the fraction of Ki-67-expressing cells for all PDXs combined (b), PDXs responding to 

elimusertib as defined per RECIST (OR, c) and PDXs with progressive disease (PD, d), 

EWS (e), ARMS (f), ERMS (g), MNA NB (h) and NMNA NB (i).  (n = 10; paired, two-

sided Student’s t test; error bars represent standard deviation, P = 0.0371, 0.0216, 

0.4764, 0.9394, 0.4935, 0.2945, 0.7005 and 0.0933 for all PDXs combined, responding 

PDXs, PDXs with progressive disease, EWS, ARMS, ERMS, MNA NB and NMNA 

NB, respectively). Scale bar = 40 µm. 

 

Figure 5. Elimusertib treatment shows a progression-free survival benefit in a 

subset of preclinical pediatric solid tumors models compared to SoC treatment. (a) 

Representation of the tumor volume after elimusertib treatment (top) and response to 

commonly used chemotherapeutic agents in our cohort of PDX models according to the 

RECIST criteria in a heatmap (bottom, progressive disease, red; stable disease, yellow; 

partial response, light green; complete response, dark green;). In dark blue, PDX 

derived from patients that previously received SoC treatment are marked. (b-f) Kaplan 

Meier curves comparing the response of tumors to elimusertib, vehicle control 

treatment, or treatment with standard of care chemotherapeutic agents for ARMS (b, 
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ntotal = 110,  P < 0.0001), ERMS (c, ntotal = 79,  P < 0.0001), EWS (d, ntotal = 132,  P < 

0.0001), MNA NB (e, ntotal = 104,  P < 0.0001), NMNA NB (f, ntotal = 88,  P = 0.0003). 

Log-rank tests were performed for statistical comparison. Single comparisons between 

elimusertib/SoC and vehicle treatment can be found in Supplementary Data Table 7. 

 

Figure 6. Genomic tumor evolution reveal mutations that are associated with 

altered response to elimusertib. (a-f) Oncoplot showing mutations and CNVs present 

in PDX models for ARMS (a), ERMS (b), EWS (c), OS (d), MNA NB (e) and NMNA 

NB (f). (g) Timeline and chemotherapy treatment of a patient with ERMS and tumor 

response to elimusertib of the corresponding PDXs. The first PDX was established from 

a primary tumor. The patient received a cycle of vincristine, actinomycin D and 

cyclophosphamide (VAC) complemented with low dosage of doxorubicin. A second 

line of treatment with irinotecan and temozolomide was added later on. Six months after 

the first biopsy, a biopsy from a relapsed tumor was used to establish a second PDX, 

and a new relapse after one month was used for the third PDX. (h) Timeline and 

chemotherapy treatment of a patient with EWS and tumor response to elimusertib of the 

corresponding PDXs. The first PDX was established from a tumor biopsy used for 

diagnosis. The patient received a cycle of vincristine, ifosfamide, doxorubicin and 

etoposide (VIDE) complemented with low dosage of doxorubicin. Four months after the 

initial biopsy, a biopsy from a relapsed tumor was used to establish a second PDX. 
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