6,060 research outputs found

    Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer

    Get PDF
    Magnetic neutral points, where the magnitude of the magnetic field vanishes locally, are potential locations for energy conversion in the solar corona. The fact that the magnetic field is identically zero at these points suggests that for the study of current sheet formation and of any subsequent resistive dissipation phase, a finite beta plasma should be considered, rather than neglecting the plasma pressure as has often been the case in the past. The rapid dissipation of a finite current layer in non-force-free equilibrium is investigated numerically, after the sudden onset of an anomalous resistivity. The aim of this study is to determine how the energy is redistributed during the initial diffusion phase, and what is the nature of the outward transmission of information and energy. The resistivity rapidly diffuses the current at the null point. The presence of a plasma pressure allows the vast majority of the free energy to be transferred into internal energy. Most of the converted energy is used in direct heating of the surrounding plasma, and only about 3% is converted into kinetic energy, causing a perturbation in the magnetic field and the plasma which propagates away from the null at the local fast magnetoacoustic speed. The propagating pulses show a complex structure due to the highly non-uniform initial state. It is shown that this perturbation carries no net current as it propagates away from the null. The fact that, under the assumptions taken in this paper, most of the magnetic energy released in the reconnection converts internal energy of the plasma, may be highly important for the chromospheric and coronal heating problem

    Berry Phase Quantum Thermometer

    Get PDF
    We show how Berry phase can be used to construct an ultra-high precision quantum thermometer. An important advantage of our scheme is that there is no need for the thermometer to acquire thermal equilibrium with the sample. This reduces measurement times and avoids precision limitations.Comment: Updated to published version. I. Fuentes previously published as I. Fuentes-Guridi and I. Fuentes-Schulle

    ViTac: Feature Sharing between Vision and Tactile Sensing for Cloth Texture Recognition

    Get PDF
    Vision and touch are two of the important sensing modalities for humans and they offer complementary information for sensing the environment. Robots could also benefit from such multi-modal sensing ability. In this paper, addressing for the first time (to the best of our knowledge) texture recognition from tactile images and vision, we propose a new fusion method named Deep Maximum Covariance Analysis (DMCA) to learn a joint latent space for sharing features through vision and tactile sensing. The features of camera images and tactile data acquired from a GelSight sensor are learned by deep neural networks. But the learned features are of a high dimensionality and are redundant due to the differences between the two sensing modalities, which deteriorates the perception performance. To address this, the learned features are paired using maximum covariance analysis. Results of the algorithm on a newly collected dataset of paired visual and tactile data relating to cloth textures show that a good recognition performance of greater than 90% can be achieved by using the proposed DMCA framework. In addition, we find that the perception performance of either vision or tactile sensing can be improved by employing the shared representation space, compared to learning from unimodal data

    Bioclimatology, structure, and conservation perspectives of Quercus pyrenaica, Acer opalus subsp. Granatensis, and Corylus avellana deciduous forests on Mediterranean bioclimate in the South-Central part of the Iberian Peninsula

    Get PDF
    The plant variability in the southern Iberian Peninsula consists of around 3500 different taxa due to its high bioclimatic, geographic, and geological diversity. The deciduous forests in the southern Iberian Peninsula are located in regions with topographies and specific bioclimatic conditions that allow for the survival of taxa that are typical of cooler and wetter bioclimatic regions and therefore represent the relict evidence of colder and more humid paleoclimatic conditions. The floristic composition of 421 samples of deciduous forests in the south-central part of the Iberian Peninsula were analyzed. The ecological importance index (IVI) was calculated, where the most important tree species were Quercuspyrenaica, Aceropalus subsp. Granatensis, and Corylusavellana. These species are uncommon in the south-central part of the Iberian Peninsula, forming forests of little extension. An analysis of the vertical distribution of the species (stratum) shows that the majority of the species of stratum 3 (hemicriptophics, camephytes, geophites, and nanophanerophytes) are characteristic of deciduous forests, and their presence is positively correlated with high values of bioclimatic variables related to humidity and presence of water in the soil (nemoral environments), while they are negatively correlated with high values of bioclimatic variables related to high temperatures, evapotranspiration, and aridity. This work demonstrates that several characteristic deciduous forest taxa are more vulnerable to disappearance due to the loss of their nemoral conditions caused by gaps in the tree or shrub canopy. These gaps lead to an increase in evapotranspiration, excess insolation, and a consequent loss of water and humidity in the microclimatic conditions.info:eu-repo/semantics/publishedVersio

    Outlier ensembles: A robust method for damage detection and unsupervised feature extraction from high-dimensional data

    Get PDF
    Outlier ensembles are shown to provide a robust method for damage detection and dimension reduction via a wholly unsupervised framework. Most interestingly, when utilised for feature extraction, the proposed heuristic defines features that enable near-equivalent classification performance (95.85%) when compared to the features found (in previous work) through supervised techniques (97.39%) — specifically, a genetic algorithm. This is significant for practical applications of structural health monitoring, where labelled data are rarely available during data mining. Ensemble analysis is applied to practical examples of problematic engineering data; two case studies are presented in this work. Case study I illustrates how outlier ensembles can be used to expose outliers hidden within a dataset. Case study II demonstrates how ensembles can be utilised as a tool for robust outlier analysis and feature extraction in a noisy, high-dimensional feature-space

    Revealing the remarkable structural diversity of the alkali metal transfer agents of the trans-calix[2]benzene[2]pyrrolidide ligand

    Get PDF
    Excellent reagents for transferring their heterocalix[4]arene ligand to f-block organometallic complexes, lithium, sodium and potassium trans-calix[2]benzene[2]pyrrolidides have been found to adopt a fascinating series of structures in their own right

    Entanglement of Dirac fields in non-inertial frames

    Full text link
    We analyze the entanglement between two modes of a free Dirac field as seen by two relatively accelerated parties. The entanglement is degraded by the Unruh effect and asymptotically reaches a non-vanishing minimum value in the infinite acceleration limit. This means that the state always remains entangled to a degree and can be used in quantum information tasks, such as teleportation, between parties in relative uniform acceleration. We analyze our results from the point of view afforded by the phenomenon of entanglement sharing and in terms of recent results in the area of multi-qubit complementarity.Comment: 15 pages, with 8 figures (Mar 2006); accepted to Physical Review A, July 2006 - slightly revise

    In silicoAnalysis of the Structural Properties of PSMA and its Energetic Relationship with Zn as Cofactor

    Get PDF
    The prostate-specific membrane antigen (PSMA) is a 100 kDa type II transmembrane glycoprotein with enzymatic activity similar to the family of zinc-dependent exopeptidases. This protein is of great medical and pharmacological interest as overexpression in prostate cells is related to the progression of prostate cancer; therefore, it represents an important target for the design of radiopharmaceuticals. The presence of two Zn2+ ions in the active site is crucial to the enzymatic activity and the design of high-affinity inhibitors. The amino acid residues coordinating these ions are highly conserved in PSMA orthologs from plants to mammals, and site-mutagenesis assays of these residues show a loss of enzymatic function or reduction of the kinetic parameters. In the present work, we performed molecular dynamics simulation of PSMA with the purpose of characterizing it energetically and structurally. We elucidated the differences of PSMA with its two Zn+2 ions as cofactors and without them in the free energy profile, and in four structural parameters: root mean square deviations and root mean square fluctuations by atom and amino acid residue, radius of gyration, and solvent accessible surface area
    corecore