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Abstract

Outlier ensembles are shown to provide a robust method for damage detection and dimension

reduction via a wholly unsupervised framework. Most interestingly, when utilised for

feature extraction, the proposed heuristic defines features that enable near-equivalent

classification performance (95.85%) when compared to the features found (in previous

work) through supervised techniques (97.39%) — specifically, a genetic algorithm. This is

significant for practical applications of structural health monitoring, where labelled data

are rarely available during data mining. Ensemble analysis is applied to practical examples

of problematic engineering data; two case studies are presented in this work. Case study I

illustrates how outlier ensembles can be used to expose outliers hidden within a dataset.

Case study II demonstrates how ensembles can be utilised as a tool for robust outlier

analysis and feature extraction in a noisy, high-dimensional feature-space.

Key words: damage detection; dimension reduction; outlier analysis; unsupervised feature

extraction; vibration monitoring.
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1 Introduction

Novelty detection algorithms that utilise outlier analysis have been used extensively for damage

detection in practical applications of structural health monitoring (SHM) [1–3]. The problem

is to identify, from the measured data, if a machine or structure has deviated from the normal

condition, that is, if the data are novel [1]. Parametric, statistical methods were first introduced

to SHM through case studies in [1]. It has been shown that using statistical outlier analysis not

only allows for the diagnosis of novelty, but also a method for dimension reduction, as models

look to define a single damage sensitive feature (novelty index), without losing efficiency of

the diagnostic [1].

In SHM, the measured data are often high-dimensional (e.g. vibration observations). As a

result, even large volumes of data records can be sparse in their feature space. This phenomenon

is referred to as the curse of dimensionality [4]; for sparse data in high-dimensions, the distance

measures used to define outliers may no longer be meaningful [4, 5]. Specifically, it has been

shown that for sparse data, the magnitude of the distances between any pair of observations

can become similar [4–6]; thus, any observation can be considered a potential outlier.

To combat issues of dimensionality, feature selection tools look to identify a low-dimensional

subset of variables from the measured data that are sensitive to damage [7]. These low-

dimensional data can then be used to describe outliers. Conventional engineering methods for

unsupervised feature selection are effective when the data are relatively clean and consistent

[1–3, 7] (see §2.4). However, it becomes infeasible to select representative features (by an

automated framework) when the data are noisy [8–10]; furthermore, conventional distance

metrics are highly sensitive to measurement noise within the chosen features [11].

While sophisticated feature selection tools can be utilised in such noisy/complex feature spaces,

many of these methods require at least some supervision (labelled data) to inform the heuristic

[8, 12]. As a result, these algorithms are acceptable for supervised leaning; but they are

counter-intuitive when building unsupervised models (e.g. novelty detectors), as labelled data

are not available. In the context of SHM, comprehensive training data, including observations

from the damaged structure, are rarely available. Clearly it is impractical/infeasible to

gather data from engineering structures (such as bridges, aircraft or wind turbines) for all the
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expected operating and damaged conditions a priori. Therefore, the practice of using labelled

data to inform feature selection is a critical issue for practical applications of SHM, despite

regular use in the literature. Considering these issues, practical systems should be adaptive

and capable of running online, incorporating any new classes (novel data-groups) as they

are discovered; thus, data outside the normal condition must not be used to inform feature

extraction. Specifically, unsupervised techniques are required for emerging semi-supervised and

active learning methodologies [13], where labelled data are initially unavailable (or limited).

Another critical issue for novelty detection in SHM concerns inclusive outliers. Inclusive

outliers are outlying groups, generally due to novelty rather than noise, hidden within the

available data [1, 2]. These data can significantly influence model parameters, leading to

masking or swamping effects. Masking is caused by inclusive outliers that lead to increased

model variance; these data can mask their own presence [2, 14], and thus, the detection of future

anomalies (i.e. leading to false negatives). Alternatively, outliers can shift the model location

(mean), leading to swamping, causing normal data to appear as outlying (false positives) [14].

Tools that utilise robust statistics [2, 15–18] look to account for, and expose, inclusive outliers;

these methods are summarised in §2.3.

This work utilises outlier ensembles as a simple but effective technique for damage detection

and dimension reduction with various problematic engineering data. A group (ensemble) of

novelty detectors are trained using either:

(a) random subsets of observations (bagging),

(b) or random subsets of features (feature bagging).

The outputs of each model are combined to provide an improved measure for damage detection

(and thus dimension reduction) in a wholly unsupervised framework. Two different engineering

applications are presented as case studies; the datasets are chosen to represent more practical

examples of SHM.

Case study I applies ensemble analysis to expose inclusive outliers, hidden within the available

data. Experiments empirically demonstrate that outlier ensembles can provide a comparable

measure of novelty when compared to alternative methods (FAST-MCD), while offering an
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intuitive framework and reduced computational cost.

Case study II demonstrates a novel framework for wholly unsupervised dimension reduction,

applied to noisy high-dimensional data. The proposed heuristic provides a robust framework

for outlier analysis in high-dimensional feature space; furthermore, when utilised for dimension

reduction, unsupervised outlier ensembles can provide features that are comparable to those

found in a supervised setting (in previous work) through manual/genetic algorithm feature

selection.

The rest of this paper is structured as follows: Section 2 gives a review of outlier analysis

from an engineering perspective, including conventional techniques; Section 3 provides an

overview of the related work, and the theoretical reasoning for outlier ensembles; Sections 4

and 5 provide two engineering case studies to empirically support claims; finally, Section 6

offers concluding remarks.

2 Outlier Analysis

In an engineering context, outliers are suitably defined for novelty detection as:

‘Data that deviate so much from other observations, as to arouse suspicions that

they were generated by some different mechanism’ [19].

Specifically, outlying data should indicate a significant change in the underlying physics of the

structure being monitored — rather than benign fluctuations in measurement noise. Although

this description is conceptually simple, detecting informative outliers from noisy engineering

data is a non-trivial task.

2.1 Various approaches & terminology

The use of outlier analysis for novelty/damage detection will be referred to as unsupervised

learning [7]. The general, unsupervised terminology used here is justified by the reasoning

that data labels, Y = {yi}Ni=1, are not directly used with the input data, X = {xi}Ni=1, to learn

the model. Instead, a model is built using using the input data alone; although, X can be
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assumed to only represent the normal condition data. The unsupervised nature of outlier

analysis (or novelty detection) can be conceptualised by considering that there is no ground

truth, Y, available to directly evaluate the quality of a model during training, and inform the

learning process.

Problems

There are two basic scenarios that describe where outlier analysis is useful in an engineering

context, these are exclusive or inclusive problems [1]. For exclusive analysis, it is assumed

that only information relating to the normal condition is provided in the available data, X,

during training. This situation is common for SHM systems that are designed to run online, as

data describing potential damaged states are rarely available a priori [1, 8]. Inclusive methods

consider outlying/novel groups that are hidden within X; these outliers remain unlabelled.

The inclusive problem can occur when a large pool of SHM data becomes available, recorded

over a range of operational/damage conditions, without descriptive labelling, Y [2]. This work

addresses both inclusive and exclusive analyses, proposing two ensemble heuristics.

Models

Various frameworks for novelty detection have been proposed, based on different notions of

what an outlier is, and dependent on the application [14]. The available techniques can be

roughly divided into two general groups; parametric statistical approaches and nonparametric

approaches [14].

Parametric, statistical approaches assume that the measured data can be represented by some

d-dimensional random vector, X , where each feature can be considered a random variable,

X (i), such that,

X ∈ R
d

∴ X = {X (1), ...,X (d)}. (1)

The random vector X is assumed to be defined by some specific probability distribution

function (p.d.f.) f , such that X ∼ f . Using these assumptions, the parameters of f can

be estimated from the available data, X, and the discordancy of any observation can be
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determined as a measure of novelty [1, 14, 15]. The theoretical detection threshold (or critical

value) to indicate novelty can be pragmatically determined for these models, as the form of f

is predefined; for details, see §2.2.

Parametric statistical models are limited by the assumption that X is sampled from some

(predefined/assumed) underlying density distribution, f — usually multivariate Gaussian.

Furthermore, the estimated parameters of f (e.g. mean, standard deviation, covariance) are

sensitive to the presence of measurement noise, as well as inclusive outliers [14]. Robust,

statistical techniques hope to combat this issue, see §2.3.

The alternative nonparametric approach does not assume a specific distribution function for

the data; instead, certain characteristics of the underlying distribution, f , are estimated [14].

These characteristics can be quantified with the use of distance and density-based methods;

both offer a basic way to estimate the density of f around data points; this can be interpreted

as kernel density estimation [14, 20]. Distance-based methods, using k-nearest neighbour

graphs [21], find global outliers as those (roughly speaking) furthest away from the rest of

the data [14]. Density-based methods, such as Local Outlier Factor (LOF) [22], identify local

outliers, defined as records located in regions of apparent low-density [14].

A problem with such nonparametric methods is the (typically) high runtime for the algorithms,

as computation includes finding k nearest neighbours for each data point [14]. Another

limitation is that the smoothness (and therefore accuracy) of the density estimation is highly

sensitive to parameter selection (e.g., the number of neighbours to consider, k [20]); inaccurate

representations of f can lead to erroneous assessments. The definition of a statistically relevant

detection threshold can be more problematic for nonparametric representations of f , due to

the complexity of the density estimates and hyperparameter sensitivity.

An engineering perspective

For engineering applications, particularly SHM, it is common practice to use parametric

statistical approaches over nonparametric methods [1–3, 7]. This is justified by the reasoning

that practical measured data, from a mechanical system or structure, should remain (relatively)

consistent over the normal condition — synonymous with the consistent underlying physical
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properties of the structure being monitored.

For example, in the context of dynamics-based monitoring, it is expected that damage will

manifest itself as alterations in the fundamental structural parameters; specifically, a reduction

in stiffness [1, 3, 7]. Changes in structural stiffness will alter the dynamic characteristics of the

system; therefore, frequency domain observations are regularly used to (indirectly) monitor

any physical changes that could relate to damage.

Various sources of noise can obscure the underlying vibrational characteristics. These effects

can be incorporated as variance within the statistical model f (provided that masking does

not occur). The distribution function f is usually assumed to be multivariate Gaussian over

the normal condition, with mean vector µ and covariance matrix Σ,

f = N (µ,Σ), such that X ∼ f. (2)

Where each ith feature in X is generated by some Gaussian distributed random-variable X (i).

The true distribution functions for most measured variables in X are unlikely to be Gaussian;

the function f might have heavier tails, or could be multi-modal — relating to inclusive

outlying data or different permitted normal conditions. Despite this, an ideal, representative

feature is often assumed to be at least approximately Gaussian over the normal condition data

[1–3, 7].

2.2 Mahalanobis squared distance

With the assumption of approximate Gaussian statistics, the p.d.f f for the d-dimensional

random vector X has been predefined, where f(x) = P (X = x) , x ∈ R
d ,

f(x) = N (µ,Σ) =
1

(2π)d/2
1

| Σ |1/2 exp
{

− 1

2
(x− µ)⊤Σ−1(x− µ)

}

. (3)

The sample mean µ̂ and covariance Σ̂ can then be determined from the available data

X = {xi}Ni=1, to give a maximum likelihood estimate of the underlying p.d.f, denoted by f̂ .

Using the parameter estimates, a discordancy test can be used to quantify the degree of novelty
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(the novelty index). This is used to evaluate whether an observation is likely to have come from

an alternative underlying distribution [2], and thus, if it has been generated by some different

mechanism. A classic discordancy measure is the Mahalanobis squared-distance (MSD) [1, 2],

D2
i = (xi − µ̂)⊤Σ̂

−1
(xi − µ̂), (4)

where xi is the observation considered as a potential outlier, and xi ∈ X. The MSD can be

interpreted as a covariance-weighted squared-Euclidean-distance, that is, if the covariance is

equal to the identity, they become synonymous [20].

The distribution of distance measures

The sum-of-squares for k independent, standard Gaussian random variables (Z) is Chi-squared

distributed, with k degrees of freedom, such that [23],

k
∑

i=1

Z(i)2 ∼ χ2
k . (5)

Recall the assumption that X is sampled from the multivariate-Gaussian random vector, X ,
such that X = {X (1), ...,X (d)}. As the MSD effectively standardises each feature (or random

variable) in X, the metric can, in theory, be considered a similar sum of squares — where

each Z(i) is a standardised version of X (i) ,

D2 ≈
d

∑

i=1

Z(i)2 ∼ χ2
d . (6)

It is important to note, however, that equations (6) and (5) are based on the asymptotic

distribution of robust distances, D2 [18], such that the covariance and mean parameters are

consistent estimators [16]. In practice, the empirical parameters (Σ̂, µ̂) used to calculate D2

are estimated from a finite sample, thus, they are inherently inaccurate. Further issues arise if

Σ̂ and µ̂ are estimated from a subset of the available data, which are assumed to be inlying.

(This applies to robust methods, explained in the next section.) In this case, the distribution

of D2 (for all N data) is shown to be better approximated by an F -distribution, such that
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D ∼ Fd,N−d; for further details, a thorough analysis of the distribution of robust distances can

be found in [24].

To summarise, D2 is unlikely to be distributed according to an exact distribution that is easily

defined. Despite theoretical limitations, the use of critical values from the χ2
d distribution

has been shown to provide a simple yet effective approach to outlier analysis with MSD-based

methods in the literature [16–18]. As a result, the approximations in this work (regarding the

discussion of the distribution of outliers) are considered justified; that is, the vector of MSD

values, D2, should be approximately χ2
d-distributed for the inlying data.

Threshold calculation

The critical value, or threshold, must be defined in order to classify data as normal or novel.

Considering the issues in assuming an exact form for the distribution of outliers, a general

Monte Carlo (MC) method can be used to define a threshold for a (finite) Gaussian-distributed

dataset and sample size [1]:

1. Construct a [ N × d ] (observations × dimensions) matrix, with each element being

sampled from a zero-mean, and unit-variance Gaussian distribution.

2. Calculate the sample mean and covariance µ̂, Σ̂, then find the MSD values for each of

the N observations, to give the vector D2, according to equation (4).

3. Repeat steps 1 and 2 for a large number of trials, storing the largest value from each D2

into an array, then sort this array in order of magnitude. The critical value for a 1% test

of discordancy is given by the the value in the array above which 1% of the trials occur.

In this work, the threshold represents a 99% confidence bound for a [ N × d ] data sample

from the (assumed) Gaussian-distributed normal condition, f . Specific details of the MC

implementation used to define the threshold is provided in each case study, § 4,5.

2.3 Inclusive novelty

Masking (or swamping) effects occur because novel groups contained within X invalidate the

assumption that all the data in X are sampled from a uni-modal, Gaussian-distributed random
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vector X . Instead, inclusive outliers are being generated by some alternative distribution, f∗;

thus, they are defined by an alternative random vector, X ∗. As a result, inclusive outliers

significantly affect the parameter estimates (µ̂, Σ̂). Robust methods mitigate the influence of

inclusive outliers, generated by f∗, and determine a more accurate estimate for the embedded

normal condition, f .

Robust statistical methods

Robust statistical methods were introduced into the field of engineering/SHM in [2]. Roughly

speaking, these algorithms accurately estimate f by finding which h-subset of observations,

H, (from the available data) have been generated by the normal condition; where H ⊂ X,

such that the size of the set (cardinality) is |H| = h. The optimal h-subset H can then be

used to determine robust estimates of µ and Σ. In the existing literature [15–18], the ways to

define H consider the minimum volume enclosing ellipsoid (MVEE) or minimum covariance

determinant (MCD). These techniques are summarised briefly; algorithm details can be found

in their respective references, as well as engineering application papers [2, 3].

The MVEE approach defines H by searching for the smallest volume ellipsoid that encapsulates

h observations in the feature space [15, 16]. Alternatively, MCD methods define H as the

subset whose covariance matrix has the minimum determinant [17, 18]. Both definitions

can be interpreted as a way to describe the (majority) h-subset (H ⊂ X) that is the most

concentrated in the feature space [16]. Intuitively, this group is assumed to be generated by

the same underlying mechanism, f . This intuition means that all the data in X no longer

need to be Gaussian distributed; instead, only a majority of the observations need to be. In

other words, robust statistical approaches only require that variables in X are approximately

Gaussian in their centre; that is, excluding the outlying values [25].

The exact MCD or MVEE is hard to compute, as it requires the evaluation of all
(

N
h

)

subsets

in X [16, 18]. Solving this combinatorial problem is infeasible when datasets are large [17, 26].

As a result, approximate algorithms are applied to practical data. Various techniques can

be used to search for the optimal h-subset; some examples include resampling algorithms

[15–17, 27] and genetic algorithms [17].

10



When comparing frameworks, the MCD estimator has a better statistical efficiency because the

parameter estimates are asymptotically normal [28], while the MVEE has a lower convergence

rate [17]. (This implies that the MCD location estimate, µ̂, is normally distributed around its

true value, µ, with the standard deviation shrinking as the sample size, h, grows.) Therefore,

discordancy measures that are based on MCD estimates are more precise [17]. Despite

these advantages, MVEE estimators were generally preferred due to improved computational

efficiency [16]. However, since the FAST-MCD heuristic was introduced by Rousseeuw and

Driessen [17], the MCD method is now commonly used, particularly for large datasets [16, 17].

The FAST-MCD algorithm is applied in this work as a benchmark (§4). Algorithm details can

be found in Appendix A.

2.4 Outlier Analysis in High-Dimensional Feature Space

As discussed, the curse of dimensionality is a significant issue for novelty detection as outliers

become hard to define. Specifically, for the MSD, if the number of observations in X is too

small, such that N < (d+ 1), the estimated covariance Σ̂ will always be singular. This occurs

when the data are too sparse to accurately represent f , and as a result, abnormally large

measures of discordancy are predicted [17].

During vibration monitoring, the observations are regularly recorded at a high sample rate, to

enable high-resolution measurements in the frequency domain; consequently, vibration data

(i.e. transmissiblities or frequency response functions) are often high-dimensional. Considering

the curse of dimensionality, an impracticable number of observations are required to build

a reliable statistical model; therefore, the high-dimensionality of measured data remains a

major issue for vibration monitoring [2, 7, 8] — particularly systems that hope to run online

[29]. Conventional engineering techniques, applied to compress high-dimensional data, are

summarised below.

Conventional methods: feature selection & dimension reduction

Various frequency-domain features are sensitive to damage; these might include phase infor-

mation, modal properties, or characteristic operational frequencies (condition monitoring)
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[7]. Most typically, the resonance frequencies of a system can be recorded over time and

used as damage sensitive features. A critical issue with practical data, however, is that

high levels of noise can make the identification of such representative features infeasible [8].

More importantly, with noisy/inconsistent data, selecting specific variables from the available

feature-set can lead to important information being lost, while the compressed data become

increasingly sensitive to noisy/abnormal behaviour.

Dimension reduction techniques offer another method for data compression, while retaining

as much information as possible from the full feature space. Linear principal component

analysis (PCA) is typically used; alternatively, nonlinear variations include kernel-PCA [30, 31]

and auto-encoder networks [32, 33]. While these methods are highly effective, the resulting

features can be interpreted such that variation within the available data is maximised. This

can become an issue when observations that represent the normal condition are inconsistent,

as the corresponding data-groups become dispersed across the feature space. In turn, this

can lead to effects that resemble masking. Variation across normal condition data is typical

with engineering data, and can occur following maintenance procedures, or environmental

influences [7]. A detailed example of this problem is illustrated in Case Study II, §5.

Utilising a subset of labelled data to inform feature selection/extraction provides an effective

alternative; these techniques are supervised methods. Sensitivity analysis [7] of variables over

the input data can help identify representative features objectively [8]. Alternatively, the use

of Genetic Algorithms (GA) has been shown to provide promising results when applied to

vibration data [12]; details of this application are summarised in §5. Despite their success,

a significant issue with supervised methods for feature extraction is their dependence on

labelled data. This renders their application irrelevant for many practical SHM systems,

which look to run online, with limited data, and in an adaptive manner [13, 29]. Furthermore,

these problems highlight the need for an alternative approach to feature selection/extraction

with high-dimensional engineering data, when conventional unsupervised techniques prove

unsuitable.
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3 Outlier Ensembles

Ensemble analysis is regularly applied in the machine learning literature to reduce the depen-

dence of model prediction on a specific realisation of the potential data [10, 14]. In general

terms, an ensemble refers to a weighted combination of M diverse base predictors, f̂m [31],

defining an ensemble output f̂E ,

f̂E(xi) =

M
∑

m=1

wmf̂m(xi), (7)

where the base predictor, fm, refers to a machine learning model; typically, a supervised

classifier is used [10, 31]. Ensemble analysis greatly increases the robustness of pattern

recognition models [10], as the combined predictions are more immune to benign variations in

the data that relate to noise, rather than novelty; theoretical justification is provided in §3.1.

For outlier ensembles, the base predictor is an unsupervised novelty detector. In this work,

each member is an MSD novelty detector, defined by µ̂m and Σ̂m. It is important to note,

however, that the ensemble framework in equation (7) is flexible; therefore, any model (that is

appropriate for outlier analysis) can be used as the base predictor.

Introducing diversity

Successful ensemble analysis requires a diverse set of predictors/models [20, 34]; roughly

speaking, there are two main approaches to introduce variability [10, 34]. Firstly, the base

predictor can be varied across members in the ensemble (i.e. changing hyperparameters, or

the algorithm itself). An issue with combining various models, however, is that the outputs

can be incomparable, leading to calibration/normalisation issues when combining predictions

[10, 34, 35]. Alternatively, for the same model, variability can be introduced through bootstrap

samples of data from X, i.e., sampling with replacement. Issues relating to calibration are

greatly reduced when diversity is introduced through sampling, as the underlying base predictor

remains constant. With these factors in mind, this work focusses on bootstrap methods, where

samples of X are taken as either: (a) subsets of observations or (b) subsets of variables/features.
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Considering the inclusive problem (presented in Case Study I, §4), the primary aim is to reduce

the effect of abnormal observations within the data on the model estimate, f̂ . Ensembles

learnt using bootstrap-sampled observations offer a solution; in this way, the set of predictors

capture variability across observations, in an attempt to expose inclusive novelty and provide

a robust estimate of f . Combining model predictions can reduce the influence of outlying

groups, that might otherwise skew the estimated parameters of f .

The high-dimensional scenario is an important application of ensemble analysis for engineer-

ing data (presented in Case Study II, §5). The useful behaviour of measurements in high

dimensional space is often described by a subset of dimensions, which are difficult to discover

in practical settings [8, 10, 12]. The use of bootstrap-sampled features (feature bagging),

introduced by Lazarevic and Kumar [36], has been shown to provide a novel, successful frame-

work for outlier analysis in high-dimensional feature spaces [9, 35]. The resulting ensemble

can provide a robust measure of novelty, as the combined outputs reduce the effect of any

noisy/misrepresentative features. Thus, feature bagging can provide a more general, robust

approach to feature selection, reducing the uncertainty associated with this inherently difficult

process [10].

3.1 Theoretical justification

The general argument for ensemble frameworks is that all members are inaccurate and produce

errors, but on different cases; if these errors are uncommon or independent, they should have a

reduced effect on the combined output [14]. Bootstrap sampling is a way to realise this theory,

as each subset can be viewed as a different sample drawn from the the underlying distribution

f , as opposed to taking X as a single realisation [14].

The work by Zimek et. al. [14] does well to formalise this argument; if the majority of data in

X (i.e. the normal/representative groups) were generated by an unknown distribution f , this

majority can be viewed as a sample drawn from the true, but unknown density function f .

Recall that parametric statistical novelty detectors estimate f from the available data, to give

an empirical approximation, f̂ . For each member in the ensemble, the estimate f̂m(x) can be
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expressed as [14],

f̂m(x) = f(x) + ǫm(x), (8)

where ǫm denotes the error of the estimate f̂m at x [14]. Note, the quality of f̂m determines

the overall success of each member, and this depends on the error, ǫm. If it is possible to

obtain multiple density estimates of f , learnt from different subsamples of data, a more reliable

estimate for the underlying function might be available by averaging their diverse results [20].

Following a model-averaging approach, the multiple density estimates, f̂m, and associated

errors, ǫm, can be considered as random variables, each with expected values [14],

E
[

f̂m(x)
]

= E
[

f(x)
]

+ E
[

ǫm(x)
]

(9)

= f(x) + E
[

ǫm(x)
]

. (10)

From this formulation, the benefits of ensemble analysis can be inferred; drawing multiple

samples from X and averaging can reduce the influence of any randomness or unusual behaviour.

Any predictions based on samples of normal/representative data, should contribute random

errors that are relatively independent on x, such that E
[

ǫ(x)
]

= E
[

ǫ
]

= e. Ideally, these errors

have zero mean and are uncorrelated, such that they cancel out and e ≈ 0. In reality, the

associated error ǫ is often dependent on x, skewing the average; particularly if misrepresentative

groups within the data relate to (correlated) novelty, as opposed to random measurement

noise. Despite this, the influence of any abnormal data should be reduced in the combined

output, as they represent a minority, by definition.

In the scenario that an ensemble fails to capture any meaningful (general) behaviour, it is

likely that the choice of base predictor, fm, is inappropriate to represent the available data. If

this is the case, a more suitable (or more flexible) model must be used to build the ensemble.

As a result, when applying ensemble analysis with MSD novelty detectors (as in this work) it

is being implied/assumed that there exists some consistent behaviour within the inlying data

that can be modelled by a Gaussian-distribution.

15



Assessing model quality

While ensemble analysis has been applied extensively in a supervised setting (classification)

[37], it is relatively unexplored for unsupervised techniques, particularly outlier analysis

[14]. As suggested by Aggarwal [35], the most likely cause of this is a lack of ground truth,

i.e. target labels of discordancy Y. Therefore, it is not possible to externally evaluate the

predictive performance of each novelty detector, due to the unsupervised nature of outlier

analysis. This absence of information makes it hard to quantify the correctness or quality of a

model in a statically robust way; consequently, various methods for learning model weights

wm (equation (7)) that are common to supervised ensembles (boosting, pruning, weighting),

become hard to implement [34].

Several ideas to provide an internal (unsupervised) estimate of model quality have been

suggested; these methods are based on an assumed ground truth [14]. Some examples include

generating artificial outliers to approximately assess the performance of each member [38],

the use of ROC curves [34], or density estimation methods [5, 35]. It is worth noting that

the robust techniques, discussed in §2.3, follow a similar framework of internal evaluation. In

this case, the quality of a model is assessed using the minimum volume enclosing ellipsoid

(MVEE) or minimum covariance determinant (MCD); therefore, these approaches also use

assumptions about an unknown ground truth, to approximately evaluate each potential model.

Considering this, the MCD is suggested as measure of quality for ensemble analysis when

exposing inclusive outliers, proposed in Case Study I, §4.

3.2 Model combination

Now that a diverse ensemble can be built, a function for combining novelty detectors must

be defined. There are various ways to do this; the best approach depends on the definition

of outliers and the application. Any meaningful combination requires that the outputs are

normalised [34, 35]. Thankfully, when using the Mahalanobis distance, output scores are

effectively normalised by the covariance matrix, so the direct combination of outputs should

not be problematic.
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Suggested methods include: using the maximum output [34], output averaging [36], weighted

averages [34] and various combinations [35]. Using the maximum output has a tendency to

severely overestimate discordancy [34]; furthermore, it is counter-intuitive when considering

the benefits associated with taking expectations. As a result, this work utilises averaging

combination functions — defined by equation (7). Application specific variants of equation (7)

are provided in each case study.

4 Case Study I: Inclusive Novelty — Z24 Bridge Data

The Z24 bridge was a concrete highway bridge in Switzerland, connecting Koppigen and

Utzenstorf. In the late 1990s, before its demolition procedure, it was used for experimental

SHM purposes under the SIMCES project [39]. Over a twelve month time period, a series

of sensor systems were used to capture dynamic response measurements, in order to extract

the first four natural frequencies of the structure. Environmental measurements were also

recorded, including air temperature, soil temperature, humidity and wind speed [40]. This

is a relatively large dataset, with 3932 observations in total. During the benchmark project,

different types of real damage were artificially introduced towards the end of the monitoring

year, starting from observation 3476 [2]. The natural frequencies, as well as soil temperature,

are shown in Figure 1. These data are considered a benchmark dataset for SHM, and they are

applied in the experiments for comparison to existing work in robust outlier analysis [2].

Figure 1 illustrates visible fluctuations between observations 1200 and 1500, while there is little

variation following the introduction of damage at observation 3476. The visible fluctuations

relate to periods of very low temperature in the bridge deck, which can be observed in the

temperature plot, Figure 1b. It is believed that the asphalt layer in the deck experienced these

very low temperatures during this time, leading to increased stiffness [17]. Therefore, as with

damage, this significant change in the underlying physics of the structure should produce data

that are novel (by definition).
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Figure 1: (a) time history of natural frequencies, (b) time history of average deck temperature.
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4.1 Building the ensemble

With these data, the outliers are contained within the dataset, and they are undefined; as a

result, this is an inclusive problem. Keeping in line with the theory discussed in this work, it

is assumed that there is some general behaviour within the data that can be estimated by a

Gaussian distribution, i.e., the inlying data. For the proposed ensemble, each member is an

MSD novelty detector with empirical parameters µ̂m and Σ̂m.

Considering the inclusive problem, the detection quality improves when reducing the negative

effects of outlying observations (hidden within the data) on the parameter estimates; therefore,

variation is introduced through bootstrap-sampled observations. In order to maximise the

chance of a sample containing only normal-condition (Gaussian-distributed) inlying data, the

subsample size, ns, should be as small as possible [15, 17]. This is formalised, such that the

probability of drawing a ‘pure’ sample is,

Ps = (1− α)ns , (11)

where α is the assumed fraction of outliers within X. Minimising ns increases the probability

of building an ensemble in which the majority of members are built on the normal inlying

data. However, as discussed, if the number of observations in each sub-sample is too small, the

estimated covariance, Σ̂m, risks becoming singular, leading to abnormally large measures of

discordancy. In the proposed heuristic, it is suggested to set ns = 3d, for good generalisation

across various engineering data. This value should prevent a singular (or near-singular)

empirical covariance. The number of members in the ensemble, M , is set such that (ns×M) =

N ; as a result, the effective/sampled dataset is the same size as the original dataset, X.

The authors acknowledge that the sample size, ns, is data-dependent; therefore, some parameter

tuning may be required to ensure a non-singular covariance while avoiding larger subsamples

that risk high levels of outlier contamination. With the Z24 data, it was found that the

range 3d < ns < 5d provided reasonable (robust) outputs. These aspects of the heuristic are

emphasised, as they highlight the need for parameter tuning with MSD outlier ensembles.

While the heuristic is still unsupervised, it is necessary to define hyperparameters with some

prior knowledge (and information in the available measured data) to ensure the results are

19



sensible. Importantly, these steps are carried out within the unsupervised framework.

Model combination by parameters

The quoted complexity of prediction for an MSD novelty detector is O(N × d) [17], as the

distance measures must be computed N times. An issue with many ensemble frameworks

is that the base predictor is run M times for all N data, leading to increased complexity,

O(N × d×M). For the inclusive problem, however, it is suggested that models are combined

by averaging over the parameter estimates, rather than predictions of discordancy. Bootstrap

sampling for parameter estimation is a common approach in the machine learning literature,

and it is often used as a Monte Carlo technique to predict sampling distribution of the

parameter estimates [31].

In the context of inclusive outlier analysis, bootstrap sampling the parameter estimates appears

logical, as it is unnecessary to calculate N distance measures for M members when only the

average of the outputs is ultimately used. This applies to the inclusive problem, as only

the parameter estimates themselves need to be robust; in fact, the sensitivity of the output

(discordancy) is desirable to some extent. (Note, this is not the case for Case Study II).

Additionally, unlike supervised ensembles, the outputs of each model are not required for

external evaluation of each member, as there is no ground truth available. Instead, the quality

of each model can be estimated using properties of θ̂, defined below; specifically, the covariance

determinant (see §4.1).

A weighted average can be applied to the committee of predictors, with M members,

θ̂E =
1

M

M
∑

m=1

wmθ̂m, (12)

where θ̂m denotes the parameter estimates, θ̂m = (µ̂m, Σ̂m), from the mth member in the

ensemble, and wm is the associated weight. By applying equation (12), N output measures of

discordancy do not need to be calculated M times; instead, the distances are only calculated

once, after parameter averaging. This reduces the predictive complexity of the ensemble to a

similar order of the base predictor, O([N +M ]× d).
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Model combination — unweighted and weighted averaging

In the following experiments, the model weights wm (equation (12)) are either:

1. set to unity for all members (unweighted average, simple mean); or,

2. defined according to an approximate measure of model quality (weighted average).

When applying method 2, samples with a smaller covariance determinant det(Σ̂m) are assumed

to represent the normal/inlying data, in agreement with the MCD estimator. Therefore,

det(Σ̂m) is used as the internal measure of model quality. In the proposed scheme, it is

suggested that the weight vector, w, is defined such that models with a large covariance

determinant are pruned out of the ensemble.

The fraction of models to keep is set at Ps, because it is assumed that Ps×M of the sub-samples

are likely to contain only ‘pure’ inlying data (see equation (11)). Therefore, Ps ×M of the

lowest determinant models are given a unit weighting, and contribute to the final output.

In words, when following method 2, the weight vector, w = {w1, ..., wM}, is defined in the

following way: determine the empirical parameter estimates (µ̂m, Σ̂m) for all M models in the

ensemble, calculate and sort covariance determinants det(Σ̂m), then sort them in ascending

order; take the Ps ×M of smallest covariance determinants and set their respective model

weights in w to unity. The pseudocode for the ensemble heuristic applied to the inclusive

problem is provided in Appendix B, Algorithm 1.

Ensemble thresholds

The threshold for the ensemble novelty index is defined by averaging, similar to output

combination. The critical value, Cm, is established for each member (according to §2.2) for

the subsample size, [ ns × d ]. The ensemble threshold, CE , is then set as the average of the

thresholds found for each member,

CE =
1

M

M
∑

m=1

Cm. (13)
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As each subsample contains the same number of observations, ns, the thresholds will be

approximately equivalent, C1 ≈ C2 ≈ ... ≈ CM ; thus, CE ≈ Cm. Therefore, the threshold only

needs to be defined once, provided that there are a large number of trials in the Monte Carlo

sampling regime §2.2 (10,000 trials are run in the experiments). This threshold is appropriate

as the behaviour of the combined ensemble outputs is dependant on the sample size used to

build each member, thus, a robust ensemble threshold should also change according to ns.

4.2 Results & discussion

The ensemble heuristic (parameter averaging, Algorithm 1) is applied to the natural frequencies

of the Z24 data, such that X ∈ R
4 and N = 3932. The novel framework is applied without

pruning (method 1) and with pruning (method 2). The performance is compared to the

standard Mahalanobis squared-distance (MSD) and the robust FAST-MCD (MCD). For the

MCD estimator, the parameter h is set to its minimum value (0.5×N), in order to provide a

sensitive measure of discordancy [17].

The results are provided in Figure 2. Each test was run 1000 times; the plots represent the

discordancy values for one trial, drawn at random (there was little variation between trials). As

expected, the standard Mahalanobis distance suffers seriously from masking effects, with very

few data being flagged as outliers. In this case, the inclusive outlying data have significantly

skewed the parameter estimates.

The robust MCD algorithm successfully eliminates the issue of masking, and it is more sensitive

to inclusive outliers, particularly those relating to very cold temperatures. The discordancy

could be slightly more sensitive for these data, as a significant proportion of the observations for

early damage (observation 3470 – 3660) appear below the detection threshold (false negatives).

Discordancy measures (consistently) pass the detection threshold shortly after the introduction

of damage, around 3670 observations.

Outlier ensembles (method 1) provide similarly robust results; however, more of the data

relating to novelty pass the detection threshold. While this means that outliers are flagged

at a higher rate from the onset of early damage (3470 – 3660), there is a clear increase in

the number of ‘false positives’, particularly for early observations. However, when observing
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Figure 2: Novelty index for the standard Mahalanobis distance (MD), the minimum covariance
determinant (MCD), outlier ensembles (OE) and pruned outlier ensembles (pruned OE).
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Figure 1, it can been seen that some of these observations (500 – 750) correspond to cold

temperature effects, so might be considered as outliers themselves. Considering the increase in

the number of normal data flagged as outlying, a key benefit of this framework is that fewer

application-specific parameters need to be defined — provided the subsample is large enough

to ensure a non-singular covariance. The analysis naturally accommodates for various levels of

contamination within X, due to the way the ensemble is built and combined; in other words,

the influence of the normal data should always be greater, as they represent a majority. While

this capability suggests a more general/automated algorithm, the performance of the ensemble

approach is more sensitive to the proportion of outliers within X, as these will always influence

the estimation of f . Therefore, the FAST-MCD algorithm is more likely to converge to the

true underling distribution f for higher proportions of outliers, following parameter tuning of

h; although, this approach is somewhat less automated.

When pruning methods are applied (method 2), the novelty index becomes more sensitive.

With this ensemble, outliers are consistently flagged from the point that damage is introduced

(3476), however, this comes with a further increase increase in the number of ‘false’ positives;

as a result, it is the authors’ opinion that this model flags too many data as outlying with these

data. Additionally, an issue with this method is defining the contamination parameter, α, which

was set to 0.1. This effectively ‘tunes’ the sensitivity of the ensemble, and introduces a more

application specific parameter; however, if there is some prior knowledge of the contamination

ratio, α, pruning offers a way to introduce this information.

Outlier ensembles provide a reduction in computational cost. When running the FAST-MCD

with the LIBRA package [41], the average run-time over 1000 trials was 0.355s. Ensemble

methods took 0.021s and 0.024s for unweighted and weighted methods respectively. This

suggests that outlier ensembles are up to 15 times faster than the FAST-MCD algorithm.

5 Case Study II: Dimension Reduction — Gnat Aircraft Data

The Gnat data are an experimental SHM dataset, recorded using a network of sensors placed on

the wing of a Gnat aircraft; schematics are provided in Figure 3. During experiments, the wing

was excited using an electrodynamic shaker and white Gaussian excitation. Transmissibilities
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associated with nine selected inspection panels (T1 – T9) were used as the main measurements

— see [8, 42, 43] for further details. The sensor layout and transmissiblities are shown in

Figure 3b. The transmissibility associated with each response transducer is obtained by taking

the ratio of the acceleration response spectrum with the reference acceleration spectrum. In

all cases, 1024 spectral lines were recorded, between 1024 and 2048Hz [12]. The logarithm of

the transmissiblity magnitudes are used as the input measurements.

Figure 3: Schematics of the Gnat aircraft wing; (a) panel locations. (b) sensor groups and
transmissibilities. Image Credit: [8]

During the experiments, artificial damage and maintenance procedures were simulated by

sequentially removing or replacing each of the nine inspections panels. It should be considered

that the removal of each panel imitates a fairly large, significant fault. Each panel is held

in place with number of screws, ranging from 8 to 26. These were replaced using an electric

screwdriver with controllable torque, in an attempt to keep constant boundary conditions [8].

It was estimated that panels 3 and 6 would cause the most problems for any pattern recognition

techniques, as they are the smallest and placed relatively close together [8]. As a result, these

data represent a 10-class problem; one class is associated with the normal condition (including

repairs) and one class for each state of damage (nine in total). There are 2482 observations in

the dataset; 700 one-shot measurements for the normal condition and 198 for each damage
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condition [12].

The complete measured data have 9216 variables (1024 × 9). (If more transmissibilties are

considered, the dimensionality can significantly increase.) With just 700 observations (of

normal condition data) to inform dimension reduction, feature selection is clearly required. In

the original papers [8, 12], these data were compressed to 9-dimensions using 9 MSD novelty

detectors, one learnt from each transmissibility. In the proposed SHM framework, these

discordancy outputs were initially used for damage detection; secondly, damage location was

achieved using the discordancy measures as inputs to learn a classifier. A multilayer perception

(MLP) was used [8].

During feature extraction, potential features for each novelty detector were selected by

identifying regions from the spectrum that were observed to be unambiguously different to

the normal condition when damage was simulated [43]. A total of 44 novelty detectors were

trained via this semi-objective framework; then, the optimal subset of 9 damage-sensitive

features was found using a Genetic Algorithm (GA) [12]. Briefly, the GA iterates though a

population of different novelty detectors, represented by a set (vector of integers, ranging from

1 - 44). The fitness of each set is assessed using a simple multilayer perception, and the inverse

classification error on a distinct validation-set [12]. The ‘fittest’ sets are passed on to the next

generation by combining their solutions. Mutation is also included by the occasional random

switch of a feature [12].

A large amount of ‘engineering judgement’ was used in the initial feature extraction steps,

and the (damage location) labels were used informally to aid this semi-objective process.

Furthermore, when applying the GA, a distinct subset of labelled data are used directly while

optimising the set of representative features. As discussed, the use of data labels during feature

extraction (both informally and directly) is a significant issue for practical applications of SHM.

In real settings, it is infeasable to collect data relating to the damaged states before an SHM

system is built. Furthermore, more practical methods (that run online, or use limited labelling

[13, 29]) can only include the new information from novel data once they are discovered.
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Application issues

Two characteristics of these data make them challenging to work with. Firstly, the data are

noisy (see Figure (4)) making conventional methods for feature selection infeasible. Secondly,

inconsistent data groups are present across the normal condition. It is believed that these

inconsistencies occur due to repeated ‘maintenance’ procedures, which were simulated when

replacing each panel using a screwdriver. Although a controlled torque screwdriver was used

in an effort to keep the boundary conditions constant following each panel replacement, this

created a lot of variability in the boundary conditions. In turn, this altered the dynamic

characteristics of the wing, leading to 7 different groups (associated with each panel replacement)

across the normal condition data, and 2 different groups associated with each class of damage

(one for each panel removal).

Figure 4: 700 transmissibility measurements across panel 1 for the normal condition data.
These data are inconsistent and noisy; furthermore, the majority of features are clearly
non-Gaussian. As a result, it is extremely difficult to represent the normal data as one class
within the feature space.

The dispersion of the normal condition data mean that conventional methods for dimension

reduction (§2.4) are impractical. Generally, these methods maximise variance, therefore, the

projections lead to highly non-Gaussian (multimodal) features. As a result, the data become
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spread out across the feature space. For example, when using PCA with these data, the

normal condition forms 7 disjoint clusters, while each state of damage forms 2 clusters, shown

in Figure 5a; these data groups correspond to the changing boundary conditions. Clearly,

conventional methods for dimension reduction are unsuitable when trying to represent any

common/general behaviour across the normal condition data. Unsurprisingly, when using

the principal components for MSD outlier analysis, masking occurs, illustrated in Figure 5b.

Note, the MSD novelty detector is trained using a sample of 50% of the normal condition

data. The training-sample (shown by a ◦ marker in all figures) is stratified, such that there

are an equal number of data from each sub-group relating to the normal condition. Each sub

group corresponds to changes following maintenance. The remaining 50% is used as a test set

(shown by a • marker in all figures), to ensure model generalisation.

It could be argued that the use of a mixture model (or nonparametric approach) would provide

a logical foundation for outlier analysis with the non-Gaussian features shown in Figure 5a.

While this may succeed, if there is a way to represent the normal data as a single (ideally

Gaussian) cluster, this can simplify any further modelling and outlier analysis in the SHM

system.

5.1 Building the ensemble

With these data, the primary aim is to alleviate the curse of dimensionality, allowing outlier

analysis in high-dimensions, without significant loss of information. Secondly, the aim is

to reduce the effects of noisy/misrepresentative features and capture any general/consistent

behaviour across inconsistent normal condition data. In other words, represent the normal

data as a single cluster within the feature space.

This has been achieved for the Gnat dataset in the past, but only through the use of labelled

data [8, 12]. Considering these aims in an unsupervised setting, the problem can be considered

as exclusive outlier analysis, such that the training data represent the normal condition data

only. Using this approach, outlier ensembles are applied to define a single measure of novelty

for each transmissibility, D2
E ; this produces a total of nine damage sensitive features, in line

with previous experiments with these data. Bootstrap-sampled features (feature bagging) are
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Figure 5: (a) Visualisation of the Gnat data using the first three principal components
(tranmissibility across panel 1, T1). The normal condition data, n, define 7 separate clusters
across the feature space. Damaged states d1-d9 are shown by colour markers. (b) MSD
outlier analysis with the first 9 principal components as inputs. These features are clearly
non-Gaussian over the normal data, therefore, significant masking occurs.
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used to build each MSD base predictor. Similar to Case Study I, applying an MSD ensemble

implies that there is some general behaviour across the feature space (for the normal data)

that can be represented by a Gaussian-distribution.

In summary, feature bagging can provide an output novelty index that is robust; thus, it is

not overly sensitive to abnormal behaviour within the feature-space. In other words, during

exclusive analysis, outlier ensembles are utilised to reduce the abnormal effects (across the

normal data) on the output measures of discordancy. This is in contrast to inclusive analysis,

which looks to expose abnormal observations within the available data; therefore, the need

for robust outputs, rather than parameters, is why parameter averaging is not suitable. As

discussed, all ensembles are built with a stratified sample of 50% from the normal condition

data (shown by a ◦ marker in all figures); the remaining 50% is included in the test-set (shown

by a • marker in all figures) to ensure model generalisation.

Model combination

A standard weighted combination of outputs [20] is applied to the committee of models with

M members,

D2
E(xi) =

1

M

M
∑

m=1

wmD2
m(xi), (14)

where D2
m denotes the discordancy from the mth member in the ensemble, and wm is the

associated weight. Each member is an MSD novelty detector with empirical parameters µ̂m

and Σ̂m. In this case study, the weight vector, w = {w1, ..., wM}, is set to unity for all

members. The discordancy measures for all the data in X are calculated for each of the M

members, D2
M . For a single, robust measure of discordancy, the averaged output (for each

observation) is used, D2
E , equation (14). Pseudocode is provided in Algorithm 2, Appendix B.

Ensemble threshold

Following a similar intuition to Case Study I, an ensemble threshold is found by applying the

method outlined in §2.2, based on the size of the feature subsample used to build each member.

Therefore, the threshold is defined, for an [ N×nf ] dataset, where nf is the number of features
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in each (random) subsample. An important distinction for this application is the reduction in

dimensionality from d to nf dimensions. As a result, when assuming Gaussian-distributed

features, the combined output measures of discordancy should (theoretically) be approximately

Chi-squared distributed, with nf degrees of freedom, χ2
nf
, see equation (6).

It should be acknowledged that the normal condition data are clearly non-Gaussian for

this dataset; therefore, the assumptions here might seem unreasonable. While this a valid

statement, when using ensemble analysis, this approach is shown (in the experiments) to

provide a successful method for robust damage detection with problematic engineering data.

Furthermore, it provides a simple framework to find a representation of dispersed normal

condition data as one cluster within the analysed feature space.

Subsample size

In contrast to Case Study I, the most representative feature subsample is more difficult to define.

If the subsamples are too small, too much information is lost, leading to conservative measures

of discordancy, see Figure 6a. If the subsamples are too large, the curse of dimensionality takes

effect, leading to a near singular covariance, Σ̂m. As a result, the novelty detectors over-train,

and all new data are flagged as outlying, including those that represent the normal condition,

see Figure 6b.

Generally, during feature bagging, the subsample size nf is randomly selected between d/2 and

(d− 1) for each member [35]. In this work, the size of each subsample is kept constant to aid

defining the threshold (§2.2) and allow for a structured analysis the outlier distribution. For

this application, nf =
√
d, as this was found to generalise well across various transmissibilities

with the Gnat data. As with Case Study I, this implies parameter tuning; therefore, nf

must defined to ensure that there is enough information in the subsamples, while avoiding a

near-singular covariance matrix. This is not problematic, as the covariance determinant can

be checked in an unsupervised setting. The number of members in the ensemble, M , is set

such that the total number of sampled features is equal to the number of dimensions in the

original dataset, i.e., M =
√
d.

31



0 500 1000 1500 2000 2500

observations (n)

10
1

l
o
g
(
M
S
D
)

n train n test d1 d2

d3 d4 d5 d6

d7 d8 d9

(a)

0 500 1000 1500 2000 2500

observations (n)

10
2

10
3

10
4

l
o
g
(
M
S
D
)

n train n test d1 d2

d3 d4 d5 d6

d7 d8 d9

(b)

Figure 6: Example ensemble analysis with 50 members, applied to the data from the
transmissibility across panel 1. (a) 4 features per subsample (b) 300 features per subsample.

5.2 Results & discussion

Novelty detection

One outlier ensemble is trained for each transmissibilty path, T1 – T9, shown in Figure 3.

The combined outputs, or novelty indices (D2
E) from each ensemble are used to compress

these high-dimensional vibration-based measurements to 9 damage sensitive features. This

follows the same SHM framework proposed in the original papers [8]; if one of the inspection

panels are removed to simulate damage, at least one novelty index should pass the detection

threshold, indicating novelty.

The combined ensemble outputs, D2
E , for T1 – T9 are shown in Figures 7 – 11. Outlier

ensembles are an appropriate tool for damage detection with these data, as novelty measures

from the various damaged states generally pass (at least one) detection threshold, while few

data from the normal condition are flagged as outlying. For each novelty index (T1 – T9),

the false positive rate (FPR) for the normal data, and the false negative rate (FNR) for each
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Figure 7: (a) Outlier ensemble novelty index (D2
E) for data from transmissibility 1 (T1);

(b) Outlier ensemble novelty index (D2
E) for data from transmissibility 2 (T2).
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Figure 8: (a) Outlier ensemble novelty index (D2
E) for data from transmissibility 3 (T3);

(b) Outlier ensemble novelty index (D2
E) for data from transmissibility 4 (T4).
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Figure 9: (a) Outlier ensemble novelty index (D2
E) for data from transmissibility 5 (T5);

(b) Outlier ensemble novelty index (D2
E) for data from transmissibility 6 (T6).
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Figure 10: (a) Outlier ensemble novelty index (D2
E) for data from transmissibility 7 (T7);

(b) Outlier ensemble novelty index (D2
E) for data from transmissibility 8 (T8).

34



0 500 1000 1500 2000 2500

observations (n)

10
1

10
2

10
3

l
o
g
(
M
S
D
)

n train n test d1 d2

d3 d4 d5 d6

d7 d8 d9

Figure 11: Outlier ensemble novelty index (D2
E) for data from transmissibility 9 (T9)

Table 1: Normal condtion false positive rate (FPR, %) and damage state false negative rate

(FNR, %) for combined ensemble outputs, T1 – T9.

normal d1 d2 d3 d4 d5 d6 d7 d8 d9

T1 2.57 0.00 0.00 55.00 0.00 0.00 97.50 46.50 5.00 0.00

T2 3.14 0.00 0.00 38.50 0.00 0.00 98.00 48.50 1.50 0.00

T3 2.57 93.00 39.00 38.50 0.00 0.00 4.50 38.50 0.00 0.00

T4 4.57 88.00 85.00 82.00 0.00 0.00 18.50 0.00 0.00 0.00

T5 15.71 83.50 76.00 80.00 0.00 0.00 25.00 42.50 25.50 0.00

T6 6.86 95.50 87.00 76.00 0.00 0.00 9.50 0.50 0.00 0.00

T7 3.43 95.00 49.50 84.50 12.00 0.00 96.50 0.00 0.00 0.00

T8 6.86 90.00 94.00 62.50 32.50 0.00 90.00 28.00 0.00 0.00

T9 4.57 93.50 94.50 77.00 0.00 0.00 67.00 53.50 0.00 0.00
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damage state, are summarised in Table 1.

Table 1 highlights that the damaged states (other than d3 and d6) have at least one ideal

feature; that is, a novelty index with a false negative rate of zero (bold, Table 1). It is

suggested that the best feature FNR for d3 and d6 reaches 38.5% and 4.5% respectively as

these measurements cover the two smallest panels, see Figure 3. It is hypothesised that these

data are more affected by the changing boundary conditions following panel replacements due

to size and location of panels 3 and 6, thus, the normal data become more difficult to represent.

In support of this this theory, previous work with these data have found the classification of

d3 and d6 problematic [8, 12].

The false positive rate for the normal data is acceptable (below 10%) for all ensemble outputs,

excluding T5. Again, it is suggested that T5 shows inferior generalisation (italics, Table 1)

as panel 5 is also relatively small and located in the centre of the wing, see Figure 3. While

this inferior generalisation could be improved, there are three ideal damage sensitive features

associated with panel 5; therefore, distinguishing between normal and novel data should not

be problematic in practice.

Unsupervised feature extraction

According to the SHM system proposed in previous work, the 9 novelty indices can then

be used as the inputs to a classification algorithm, to predict the location of damage. This

9-class dataset is visualised (including the normal data) via principal component analysis in

Figure 12. It can be inferred that the use of outlier ensembles for dimension reduction has been

successful, as each class forms clusters that are relatively separable and distinct. Furthermore,

the inconsistent normal data are now represented as a single cluster within the feature space,

while any novel measurements form separated groups.

The 9-class damage location problem (damaged data only) is visualised in Figure 13a. To

assess these features against those found in a supervised setting, the alternative 9-class dataset

(found using a genetic algorithm and semi-objective method [8, 12]) is visualised in Figure 13b.

It can be observed in Figure 13a that each damaged class generally forms 2 separated groups;

as discussed, this is expected as a result of the changing boundary conditions following panel

36



-4

4

-3

-2

2

-1

P
C
3

4

0

PC
2

0

1

2

PC
1

2

-2 0

-2
-4

n train n test d1 d2 d3 d4

d5 d6 d7 d8 d9

Figure 12: The compressed Gnat data; including the 9 damaged sates (colour markers) and
the normal condition (black markers). The 9 damage sensitive features are visualised using
PCA projection.
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replacement. A multi-layer perception (MLP) is used to learn a mapping from the input

measures of discordancy, to output labels of damage location. The MLP has one hidden

layer (2-layers of weights); a bias is included with each layer of weights. The network has 9

inputs, and 9 outputs for classification. The rectified linear unit (ReLu) activation function

is used in the hidden nodes and the Softmax activation function at the outputs. To limit

the complexity of the network architecture and mapping, the maximum allowed number of

hidden nodes is 10. (For discussions regarding over training/complexity, refer to [12]). The

network is then trained according to the ‘1 of M’ strategy [44]. The optimal number of hidden

nodes (1 – 10) is determined using a distinct validation set, which is also used to prevent

over-training via early stopping. For each network architecture, the weights are initialised

10 times; the weights with the best classification accuracy on the validation-set are used in

the final model. The training set is built with a stratified sample, in which an equal number

of data are randomly sampled from each damaged class. This approach differs to previous

experiments with the Gnat data [8, 12], where the training-set was defined with a sample

of equally spaced observations; therefore, slightly inferior generalisation is expected in the

experiments here (for the same supervised features).

For these problematic engineering data, the use of outlier ensembles can produce damage-

sensitive features with a classification accuracy that is near identical to the features extracted

in a supervised framework. Specifically, the classification accuracy (on a distinct test-set) when

using the features found via unsupervised outlier ensembles is 95.85%; when using the features

found in a supervised setting [8, 12], the classification accuracy is 97.39%. The similarity in the

classification performance is extremely significant for feature extraction from high-dimensional

SHM data, particularly vibration-based measurements, as the use of outlier ensembles can

produce robust damage sensitive features, without the need for labelled data or measurements

of the system outside the expected normal condition(s). Additionally, outlier ensembles appear

to successfully represent noisy, disjoint (non-Gaussian) features as a single cluster within the

feature space, illustrated in Figure 12. This representation of measured data is a major benefit

when applying any clustering/classification algorithms, later in the SHM framework.
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Figure 13: 9-class classification problem for damage location. (a) PCA visualisation of the
9-dimensional dataset found using a genetic algorithm and semi-objective framework [8, 12]
(supervised). (b) PCA visualisation of the 9-dimensional dataset found using outlier ensembles
(unsupervised).
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Analysis of outliers

According to the assumptions summarised in §2.2 (Gassian-distributed features, consistent

parameter estimation) the discordancy measures across the normal condition data should be

approximately Chi-square distributed with nf degrees of freedom. A histogram of the empirical

distribution of D2
E (for all 9 transmissibilities, T1 – T9) is provided for the normal data in

Figure 14.
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Figure 14: Normalised distribution of the combined output measures, D2
E , for the normal

condition test-data (T1 – T9). The red dotted line shows a Chi-squared distribution with nf

degrees of freedom. The red dashed line shows the 99% threshold found defined using the
Monte Carlo sampling method.

While the distance measures are not Chi-square distributed, the outputs are considered

approximately Chi-square distributed with nf degrees of freedom, at least for the purposes of

this duscussion. As the combined outputs (D2
E) are distributed in this way, it can be assumed,

roughly speaking, that a pseudo-Gaussian representation of the normal data has been found,

such that a uni-modal representation that captures the general behavior acorss the normal data.

Therefore, considering the highly inconsistent nature of the data from the normal condition(s),

feature bagging appears to capture any consistent/general behaviour over inconsistent training

data, while producing a robust measure of novelty from a high-dimensional feature space.

An alternative way to view the output distribution is to analyse the discordancy measures

from all M members before averaging, D2
M . The distribution of D2

M for the training data (T1

40



– T9) is shown in Figure 15. In this analysis, the empirical distributions are better defined,

as there are M × n × 9 measures of discordancy, where n is the number of observations.

Using this approach, outlier ensembles offer a robust route to hypothesis testing with high-

dimensional data. Note, hypothesis testing is feasibile becuase boot-strap sampling increases

number distances which can be used to define the empirical distribution, as the outputs from

all members of the ensemble are used. To illustrate the potential of this framework, the

discordancy distribution for the normal condition test-set is shown in Figure 16a, and for

the damaged data, Figure 16b. There is a clear difference between the output distributions

following damage; specifically, the high-value tail of the distribution becomes much heavier.

Hypothesis tests such as the Kolmogorov-Smirnov test (KS-test) or the maximum mean

discrepancy (MMD) could be used to assess the difference between the output distributions.

This should allow for the detailed analysis of outliers, and the potential to classify damage

according to the distribution behaviour.
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Figure 15: Distribution of the output measures of discordancy for all members in the ensemble
D2

M (normal condition data, T1 – T9).

The KS-test is applied to the results from the Gnat data for demonstration. In a two-sample

test, the test-statistic is defined by the maximum difference between the two (empirical)

cumulative density functions. If the data have been generated by the same underlying p.d.f,

the test-statistic will tend to zero as the number of observations in each sample increases.

For example, when compared the output distribution for the training data (Figure 15), the
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Figure 16: Output distribution from the outlier ensembles (T1 – T9): (a) normal test data,
(b) damaged data d1.

normal condition test-data (Figure 16a) have a KS-statistic of 0.057, while the distribution for

d1 damage (Figure 16b) gives 0.306. Similarly, the distribution of ensemble outputs for each

observation can be compared to the distribution of the normal data. In this way, hypothesis

tests can be used to provide another robust measure of novelty. Figure 17 shows the behaviour

of the KS-statistic for each observation in the test data; these results are provided to highlight

the potential for more detailed hypothesis testing using the distribution of outliers. Specifically,

as the outlying data should appear in the tails of the distributions, it is suggested that outlier

ensembles might be used as the foundation for extreme value statistical analysis [23].

6 Conclusions

Outlier ensembles have been introduced as a tool for robust statistical outlier analysis with

practical examples of engineering data. A diverse ensemble of Mahalanobis squared-distance

novelty detectors has been trained, using either bootstrap-sampled features (feature bagging)

or bootstrap-sampled observations. Provided that there exists some consistent behaviour

within the inlying data that can be modelled by a Gaussian-distribution, the ensembles outputs

can be used as a tool for robust damage detection, as well as dimension reduction, in an

unsupervised framework. In each of the case studies, while the heuristic has required some
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Figure 17: The two sample KS-test statistic comparing the distribution of DE for each
test-observation to the distribution of DE from the normal condition training data.

parameter tuning, the demonstrated method can still be considered unsupervised, as it does

not require any labelled data; specifically, the tuning of parameters is possible within the

unsupervised framework.

In Case Study I, an alternative approach for robust inclusive outlier analysis has been proposed.

The heuristic is compared to the benchmark FAST-MCD algorithm, and it is shown to

provide a discordancy measure that is comparably sensitive to inclusive novelty within a

practical engineering dataset. Additionally, the new framework runs up to 15 times faster than

the FAST-MCD algorithm, and the (unweighted) method requires fewer application specific

parameter to be set (provided that subsamples are large enough to avoid a singular covariance).

This indicates an algorithm that should generalise well across various data, requiring less

tuning of the parameters; it is acknowledged, however, that the success ensemble methods is

inherently sensitive to the proportion of inclusive outliers within the dataset.

Case Study II demonstrates how outlier ensembles can be utilised as a tool for robust damage

detection (and dimension reduction) with high-dimensional data in a wholly unsupervised

framework. The analysis offers an effective method to represent noisy/inconsistent training

data as one cluster within the feature space. Most significantly, when compared to features

extracted in a supervised setting (via a genetic algorithm), the unsupervised features produce
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a comparable classification accuracy in a damage location problem. Specifically, when using

the features found via unsupervised outlier ensembles, the accuracy is is 95.85%, while the

supervised features give an accuracy of 97.39%. This is of particular value to SHM systems,

as labelled data are rarely available to inform feature extraction in practical applications; this

includes any systems that look to run adaptively, online and with limited supervision.

Further work is suggested. Firstly, analysis should be applied to various datasets, with different

levels of contamination to test generalisation. Alternative combination weightings could be

explored to improve on the simple pruning (and unit weighting) regime suggested here. Finally,

it is suggested that the output distributions from ensemble analysis offers an alternative

foundation for extreme value statistical analysis.
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Appendices

A The FAST-MCD algorithm

The heuristic is characterised by repeated C-steps (concentration steps) [17, 18]:

1. take subset H1 ⊂ X, that is |H1| = h,

2. calculate the empirical estimates of the mean µ̂1 and covariance matrix Σ̂1 from the

data in H1,

3. define relative distances for all N data:

D2
1(xi) = (xi − µ̂1)

⊤Σ̂
−1
1 (xi − µ̂1) , ∀ xi ∈ X;

4. sort all distances in ascending order, such that

{D2
1(xi)(1) ≥ D2

1(xi)(2) ≥ ... ≥ D2
1(xi)(N)} , ∀ xi ∈ X;

5. now set H2 as the data with the smallest distances, such that:

{D2
1(xi) : i ∈ H2} := {D2

1(xi)(1), ...D
2
1(xi)(h)}, again |H2| = h.

Repeating these steps will always concentrate the determinant, such that det(Σ̂2) ≤ det(Σ̂1),

with equality if and only if µ̂2 = µ̂1 and Σ̂2 = Σ̂1 [17, 18]. C-steps can be iterated until

a stopping criterion is met; for example, if det(Σ̂new) = det(Σ̂old) [18]. To construct the

initial H1 subset, a small random (d+ 1)-subset is sampled and then enlarged to a h-subset

with minimal discordancy measures [17] . This method yields better results than drawing a

random h-subset directly, because the probability of drawing a outlier-free subset is much

higher for smaller (d+ 1)-subsets [18]. The FAST-MCD algorithm has further improvements

for computational efficiency, these include multiple initialisations and partitioning schemes for

large datasets [18]; for details, refer to the original paper [17].
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B Heuristics

The two variations of the algorithm are provided in pseudo-code, Algorithms 1 and 2.

Algorithm 1: Averaged parameters

Input :Available data X

Output :Discordancy measures D2

1 N := number of observations in X;

2 d := number of dimensions in X;

3 ns = 3× d (subsample size);

4 M = N/ns (number of members);

5 µ̂E ← {M × d} (initialise parameter);

6 Σ̂
−1

E ← {d× d×M} (init. parameter);

7 for m = 1 : M do

8 Random sample ns observations from X;

9 Calculate empirical parameters from the

random sample (µ̂m, Σ̂
−1

m );

10 Store estimates in the mth location of the

parameter arrays µ̂E , Σ̂
−1

E ;

11 end

12 Combine parameter estimates by (a) or (b)

averaging of µ̂E and Σ̂
−1

E ;

13 Calculate discordnacy measures (with

averaged parameters) for all x ∈ X, D2;

Algorithm 2: Feature bagging

Input :Available data X

Output :Discordancy measures D2

E ,D
2

M

1 d := number of dimensions in X;

2 nf =
√
d (subsample size);

3 M =
√
d (number of members);

4 D2
M ← {n×M} (initialise outputs);

5 for m = 1 : M do

6 Random sample nf features from X;

7 Calculate empirical parameters from the

random subsample (µ̂m, Σ̂
−1

m );

8 Calculate discordnacy measures D2

m for all

x ∈ X;

9 Store D2

m in the mth column of the output

array D2

M ;

10 end

11 Combine outputs by averaging rows of D2

M , i.e.

D2

E = average(D2

M );
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