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Abstract— Vision and touch are two of the important sensing
modalities for humans and they offer complementary informa-
tion for sensing the environment. Robots could also benefit from
such multi-modal sensing ability. In this paper, addressing for
the first time (to the best of our knowledge) texture recognition
from tactile images and vision, we propose a new fusion method
named Deep Maximum Covariance Analysis (DMCA) to learn
a joint latent space for sharing features through vision and
tactile sensing. The features of camera images and tactile data
acquired from a GelSight sensor are learned by deep neural
networks. But the learned features are of a high dimensionality
and are redundant due to the differences between the two
sensing modalities, which deteriorates the perception perfor-
mance. To address this, the learned features are paired using
maximum covariance analysis. Results of the algorithm on a
newly collected dataset of paired visual and tactile data relating
to cloth textures show that a good recognition performance
of greater than 90% can be achieved by using the proposed
DMCA framework. In addition, we find that the perception
performance of either vision or tactile sensing can be improved
by employing the shared representation space, compared to
learning from unimodal data.

I. INTRODUCTION

Vision and tactile sensing are two of the main sensing
modalities to perceive the ambient world for humans. We
employ eyes and hands in a coordinated way to fulfill
complex tasks such as recognition, exploration and manipu-
lation of objects: vision perceives the appearance, texture and
shape of objects at a certain distance whereas touch enables
the acquisition of detailed texture, local shape and other
haptic properties through physical interactions. In addition,
we have experience of “touching to see” and “seeing to
feel”. Specifically, when we intend to grasp an object, we
are likely to glimpse it first with our eyes to “feel” its
key features, i.e., shapes and textures, and estimate haptic
sensations. Such visual features become unobservable after
the object is grasped since vision is occluded by the hand and
becomes ineffective. In this case, touch sensation distributed
in the hand can assist us to “see” corresponding features. By
tracking and sharing these clues through vision and tactile
sensing, we can “see” or “feel” the object better.

Research conducted in neuroscience and psychophysics
has investigated sharing between vision and tactile sensing
[1]. Visual imagery has been discovered to be involved in
the tactile discrimination of orientation in normally sighted
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Fig. 1: (a) The GelSight tactile sensor [5]. (b) GelSight
data is collected by pressing the sensor on clothes. (c) The
GelSight image with markers (block dots) captured when no
object in contact with the sensor. (d) The GelSight image
collected when the coated membrane is deformed by the
cloth texture.

humans [2]. The human brain also employs shared models
of objects across multiple sensory modalities such as vision
and tactile sensing so that knowledge can be transferred from
one to another [3]. This sharing of information is especially
useful when one sense cannot be used. For instance, it has
been found that humans rely more on touch when the texture
has small details that are difficult to see [4].

Inspired by the synthesis of vision and tactile sensing in
humans, we apply the representation sharing across the two
modalities in the artificial perception. There are differences
between vision and tactile sensing. For vision, the field
of view (FoV) is large and global; there are factors that
can affect visual perception, e.g., scaling, rotation, transla-
tion, color variance and illumination.In contrast, for tactile
sensing, the FoV is small and local as direct sensor-object
interactions need to be made; the influence of scaling is
shielded as the real dimension and shape of the object
interacted with can be mapped to the tactile sensor directly,
whereas the impact of rotation and translation remains. In
addition, the different impressions of object shapes caused
by forces of various magnitudes and directions resemble the
variety of light and illumination conditions in vision. How
to learn a joint latent space for sharing features through



vision and tactile sensing while eliminating or mitigating the
differences between these two modalities is the key issue we
will investigate in this paper.

We take cloth texture recognition as the test arena for our
algorithms as it is a perfect scenario for sharing features
through vision and tactile sensing: the tactile sensing can
perceive very detailed texture such as yarn distribution pat-
tern in the cloth whereas vision can capture similar texture
pattern (though sometimes is quite blurry). There are also
factors that only exist in one modality that may deteriorate
the recognition performance. For instance, color variance of
cloth is present in vision but is not demonstrated in tactile
sensing. We aim to extract the shared information of both
modalities while eliminating these factors.

In this paper, we propose a novel deep fusion framework
based on deep neural networks and maximum covariance
analysis to learn a joint latent space of vision and tactile
sensing. We also introduce a newly collected dataset of
paired visual and tactile data. The rest of paper is organized
as follows: related work is reviewed in Section II; the tactile
sensor GelSight is introduced in Section III; the new dataset
combining vision and tactile data is presented in Section IV;
the proposed framework is illustrated in Section V; experi-
mental results are presented in Section VI; conclusions and
future work are described in Section VII.

II. RELATED WORKS

A. Fusion of vision and tactile sensing

With attempts dated back to the 1980’s [6], tactile sensing
has been acting a supporting role for vision in most previous
works due to the low resolution of tactile sensors [7]–[9]. By
using the tactile device to confirm the object-sensor contact,
in [10] visual features are extracted first to form an initial
hypothesis of object shapes and tactile measurements are
then used to refine the object model. Hand-designed features
can also be extracted from tactile data to form a feature set
with visual features. In [11], image moments of tactile data
(both 2D and 3D) are utilized together with vision and action
features to create a feature set to facilitate grasping tasks. In
[12], to identify the content in a container by grasping, the
general container deformation is observed by vision and the
pressure distributions around the contact regions are captured
by tactile sensors. The knowledge embedded in vision and
tactile sensing can also be transferred from one to the other,
for instance, in [13] vision and tactile samples are paired to
classify materials. In more recent works [14] and [15], deep
neural networks are used to extract adjectives/features from
both vision and haptic data. Differently from the prior works
using low-resolution tactile sensors (for instance a Weiss
tactile sensor of 14×6 taxels used in [16], [17]), we use
a high-resolution GelSight sensor of (320×240) to capture
more detailed textures. The GelSight sensor is also used in
[18] to fuse vision and touch data where the goal is rather
to reconstruct a point cloud representation and there is no
learning of the key features of the two modalities.

B. Multi-modal deep learning

This work is broadly inspired by the emerging efforts put
into learning latent features from multiple modalities. Many
works have attempted to investigate the cross-modal relations
between vision and sound (especially speeches) modalities
[19]. One interesting example is [20] where sounds are
produced from image sequences. The correlations between
other modalities can also be learned from the features using
deep neural networks, for example, matching images and
caption texts [21], and inferring mechanical properties of
fabrics from depth and touch data [22]. In this work, we
leverage the natural synthesis of vision and tactile sensing to
learn deep shared representations of these two modalities.

C. Surface texture recognition

Most previous works on texture recognition employ data
from either vision or tactile sensing only. The most popular
hand-crafted features for texture recognition are based on
Local Binary Pattern (LBP) descriptors that have been ap-
plied in either visual [23] or tactile [24] texture recognition.
In tactile sensing, it is common to move a high-frequency
dynamic sensor across an object surface: by sensing the
friction arising from the contact, the surface textures can be
recognized [25]. In such works, single-point contact sensors,
e.g., whisker-like sensors, are commonly used. In this paper,
a high-resolution GelSight sensor is held stationary to press
on the texture, which is a much harder problem than the
standard texture recognition approaches using a dynamic
contact sensor. Furthermore, to the best of the authors’
knowledge, this is the first work to explore both tactile
images and vision data for texture recognition.

III. GELSIGHT TOUCH SENSOR

The GelSight tactile sensor used in this paper is a high-
resolution tactile sensor that can capture the surface geometry
and texture of interacted objects. It consists of a camera at
the bottom and a piece of elastometric gel coated with a
reflective membrane on the top, as shown in the Fig. 1a. The
elastomer deforms to take the surface geometry and texture
of the objects that it interacts with. The deformation is then
recorded by the camera under illumination from LEDs of
R, G, B colors that project from various directions through
light guiding plates towards the membrane. In this manner,
a 3-dimensional height map of the touched surface can then
be reconstructed with a photometric stereo algorithm [5].

To make the transparent elastomer sensitive to the contact,
after trials, the elastomer made of the silicone rubber XP-
565 from Silicones, Inc., with the neo-Hookean coefficient µ
of 0.145MPa, is found most suitable for the task. We use a
webcam of 960×720 and implement the surface topography
recovery system on a Matlab platform with the webcam
running at over 10 Hz. On the elastomer membrane there
are some specially designed markers (square with side length
0.40mm) that can improve the tactile spatial acuity [26].
The sensor is made with inexpensive materials and can
give high spatial resolution. In addition, the sensor is not
affected by the optical characteristics of the materials being



measured like visual cameras, which allows the capture of
a wide range of material surfaces. Furthermore, the use of
compliant elastomer gel allows the measurement of rich
physical properties of objects interacted with.

IV. VITAC CLOTH DATASET

We have built a clothing dataset of 100 pieces of everyday
clothing of both visual and tactile data, which we call the
ViTac Cloth dataset. The clothing are of various types and
are made of a variety of fabrics with different textures. In
contrast to available datasets with only either visual images
[23] or tactile readings [24] of surface textures, the data of
two modalities, i.e., vision and touch, was collected while
the cloth was lying flat. The color images were first taken
by a Canon T2i SLR camera, keeping its image plane
approximately parallel to the cloth with different in-plane
rotations for a total of ten images per cloth. As a result,
there are 1,000 digital camera images in the ViTac dataset.
The tactile data was collected by a GelSight sensor. As
illustrated in Fig. 1b, a human holds the GelSight sensor
and presses it on the cloth surface in the normal direction.
In Fig. 1c, a GelSight image with markers is shown as the
sensor appears in a non-contact state. As the sensor presses
the cloth, a sequence of GelSight images of the cloth texture
is captured, as shown in Fig. 1d. On average each cloth was
contacted by the sensor for around 30 times and the number
of GelSight readings in each sequence range from 25 to 36.
In total 96,536 GelSight images were collected. All the data
is based on the shell fabric of the cloth; any hard ornaments
on the clothes were precluded from appearing in the view
of GelSight or digital camera. Examples of digital camera
images and GelSight data are shown in Fig. 2.

V. DEEP MAXIMUM COVARIANCE ANALYSIS

In this section, we introduce the framework of Deep Max-
imum Covariance Analysis (DMCA) to match the weakly-
paired vision and tactile data. As illustrated in Fig. 3,
DMCA first computes representations of the two modalities
by passing them through separate multiple stacked layers
of a nonlinear transformation and then learns a joint latent
space for two modalities such that the covariance between
two representations as high as possible.

Let X = (x1, ..., xn) ⊂ Rd×n and X ′ = (x′1, ..., x
′
n′) ⊂

Rd′×n′
be the data sets from two sensing modalities, i.e.,

camera images and GelSight data, respectively. We aim to
obtain the functions f and f ′ to map both X and X ′ to
a shared space Rq . In this multimodal setting, unimodal
methods can still be used by just processing each data
domain independently such as Principal Component Anal-
ysis (PCA). However, the functions f and f ′ can depend
on both modalities, therefore, better representations of the
information can be retained by finding the dependencies
between different modalities than those methods using only
unimodal information. There are several methods that can be
applied for learning the shared representations of multiple
modalities. One typical example is Canonical Correlation
Analysis (CCA) that has been used not only for shallowly

learned features but also in the context of deep learning
[21]. But CCA is a distinctive method that constructs lower-
dimensional representations suitable for a specific task. It
orients the learned features to be projected in a space that
discards the information not relevant to this task. In this
manner, it can achieve a high performance in one task
whereas cannot perform well in another. For this reason, we
choose the generative dimensionality reduction method MCA
to find lower-dimensional representations of the multimodal
data that are appropriate for various tasks. MCA, also known
as singular value decomposition (SVD) analysis, constructs a
covariance matrix between two datasets and then performs a
SVD of the resulting matrix. It is a useful statistical technique
for extracting coupled modes of variability between data
from two modalities.

Before applying MCA, we learn representations for the
two modalities separately to better represent the data from
each modality. We feed the camera and GelSight images into
two neural networks respectively, as shown in Fig. 3. In this
work, the GelSight data is fed into the networks as separate
images. In [15], a ConvNet is built to predict the tactile
information during poking given an image of the object and
the pretrained CNNs have been used. Following this work,
we initialize by pre-training the AlexNet architecture [27]
and transfer the learned weights for each part of the network.
The learned hidden representations from the output of the
FC8 layer H ⊂ RD×n and H ′ ⊂ RD′×n′

are fed into
the MCA layer, where D and D′ are the dimensions of the
hidden representations in the two modalities respectively.

Given two fully paired representation H and H ′, i.e., there
is a pairing between each hi and h′i. MCA seeks pairs of
linear projections W , W ′ that maximise the covariance of
the two views:

(W ∗,W ′∗) = argmax
W,W ′

cov(WTH,W ′TH ′)

= argmax
W,W ′

tr[WTHH ′TW ′]
(1)

As mentioned, MCA is a good method for multimodal
dimensionality reduction, but it requires fully paired data that
is not the case in many applications. For example, in our
situation, the visual and GelSight images cannot be fully
paired as they are collected in different phases. As tactile
data is attained, the camera vision will be obstructed by the
GelSight sensor and the state of the cloth will be changed due
to the GelSight sensor-cloth interaction. Therefore the data
from the two modalities cannot be fully paired. To solve this
kind of weakly paired situation, we employ a variant of MCA
proposed in [13]. Similar to Eq. 1, we perform multimodal
dimensionality reduction by solving a SVD problem with
projection matrices W and W ′ and also a n × n′ pairing
matrix Π to pair instances from both modalities:

(W ∗,W ′∗, Π) = argmax
W,W ′,Π

tr[WTHΠH ′TW ′] (2)

Here, Π ∈ {0, 1}n×n′
, i.e., the elements of Π are either

1 or 0. If Πi,j = 1, it implies a pairing between the ith



Fig. 2: Example camera images (top row) and corresponding GelSight images (bottom row) from the ViTac Cloth dataset.
To make the textures visually distinguishable, the images shown here are enlarged parts of raw camera/GelSight images.
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Fig. 3: Architecture of the proposed network. The camera and GelSight images are fed into two separate networks and the
learned features from the two pipelines are used to achieve a joint latent space using a MCA block.

vision sample and the jth tactile sample. Each sample is
only paired to at most one sample in the other modality, i.e.,∑n
i=1Πi,j ≤ 1 for all j = 1, ..., n′ and

∑n′

i=1Πi,j ≤ 1 for
all i = 1, ..., n. In this manner, the strong pairings between
individual samples in a weakly paired group can be inferred.

As (2) requires both continuous optimization for W and
W ′, and combinatoric optimization for Π , therefore, there
is no single closed-form solution to this optimization. To
solve this problem, alternating maximization is applied. First,
assumed that Π is known, SVD can be performed as in (1):

(W ∗,W ′∗) = argmax
W,W ′

tr[WTHΠH ′TW ′] (3)

Second, assuming that W and W ′ are known, i.e.,
Π∗ = argmax

Π
tr[WTHΠH ′TW ′] (4)

This corresponds to a linear assignment problem and can
be solved using the Jonker-Volgenant algorithm that needs
expensive computations, especially for the singular value
decompositions. In the application of learning shared rep-
resentations of vision and tactile sensing, the dimension of
learned features required to encode the rich information in
camera and GelSight images is in the order of 103, for
example, we have D = 4, 096 for the hidden representations
of camera images. To make DWCA practically applicable to
our application, we implement both the feature learning and
MCA phases on a GPU with the CUBLAS and CUSOLVER
libraries distributed as part of NVIDIA’s CUDA Program-
ming Toolkit1 to compute linear algebra subroutines.

1https://developer.nvidia.com/cuda-toolkit/

VI. EXPERIMENTS AND ANALYSIS

We evaluate the proposed DMCA method on cloth texture
recognition using tactile and vision data in the ViTac Cloth
dataset. We first perform the standard unimodal classification
using training and test data of the same single modality. Then
we examine the cross-modal classification performance, i.e.,
training a model based on one sensing modality while apply
the model on data of the other modality. This is based on
the assumption that visually similar textures are more likely
to have similar tactile texture, and vice versa. Lastly, we
consider a shared representation learning setting, which is to
learn a shared representation of both modalities that is used
to recognize textures with single modality in the test phase.

The data in the two modalities in the ViTac Cloth dataset is
split into two parts of a 9:1 ratio for training and test data. As
stated earlier, the GelSight data and camera images cannot be
fully paired, therefore, we use the weak pairing information
of which cloth surface the data is recorded from. For each
camera image or GelSight reading, we resize the image to
256 × 256 first and then extract the center part of image
227 × 227 as the input of the neural networks. To measure
the performance of the proposed DMCA method, we use the
standard multi-class accuracy as our performance metric. We
implement our code in Keras with a Theano backend2.

A. Unimodal cloth texture recognition
We first perform the classic unimodal recognition task

using data of each single modality. Following [15], we fine-
tune the AlexNet model and replace the last layer with

2http://deeplearning.net/software/theano/



TABLE I: Texture recognition using unimodal modalities and
cross modalities of vision and tactile sensing

Training data Test data Recognition accuracy
Vision Vision 85.9%
Tactile Tactile 83.4%
Vision Tactile 16.7%
Tactile Vision 14.8%

a fully connected layer of 100 outputs, where 100 is the
number of texture classes. We use cross-validation to deal
with over-fitting, with a learning rate of 0.001, batch size
of 128 and 20 epochs used, and the rest of the experiments
follow the same configuration. When we use the data from
the GelSight sensor for both training and test set, an accuracy
of 83.4% can be achieved for the cloth texture recognition.
And when we take the data from the digital camera for both
training and test set, an accuracy of 85.9% can be obtained.
This shows that the feature representations learned by deep
networks enable texture recognition with either modality
alone. However, especially for robotics, training data of a
particlar modality is not always easy to obtain. For instance,
due to limited options of off-the-shelf high-resolution tactile
sensors and the high cost of sensor development, tactile data
for objects is neither commonly available nor easy to collect;
also, detailed textures of objects are not always easy to access
by digital cameras either. To this end, next we explore the
cross-modal cloth texture recognition to train a model using
one sensing modality while applying the model on data from
the other modality.

B. Cross-modal cloth texture recognition

It is possible to recognize cloth textures using data of one
modality with the model trained on the other because both
GelSight and camera data are presented as image arrays and
cloth textures appear to be of similar patterns in both as
shown in Fig. 2, which is similar to the case when humans
see/feel cloth textures. The recognition results of unimodal
and cross-modal cloth texture recognition are listed and com-
pared in Table I. Perhaps surprisingly, the cross-modal cloth
texture recognition performs much worse than the unimodal
cases. When we evaluate the test data from GelSight sensor
using the model trained on vision data, an accuracy of only
16.7% is achieved. It is even worse when we evaluate the
test data from the digital camera using the model trained on
GelSight data, only an accuracy of 14.8% is obtained. The
probable reasons are factors that make the same cloth pattern
appear different in the two modalities. In camera vision,
scaling, rotation, translation, color variance and illumination
are present. For tactile sensing, impressions of cloth patterns
change due to different forces applied to the sensor while
pressing. These differences mean that the learned features
from one modality may not be appropriate for the other. To
extract correlated features between vision and tactile sensing
and preserve these features for cloth texture recognition
while mitigating the differences between two modalities, we
explore the proposed DMCA method to achieve a shared
representation of textures for both modalities.
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Fig. 4: Cloth texture discrimination accuracy with GelSight
test data for the different numbers of shared space dimen-
sions, by applying DMCA to bimodal data.

C. Shared representation learning for cloth recognition

In the experiments, we assume that both camera and Gel-
Sight data are present during the model learning phase, but
only GelSight or camera data is used in the later application
to new data. The setting can help us to find whether DMCA
can acquire low dimensional representations that demonstrate
better information embedded in the bimodal data than those
learned from unimodal data.

We first investigate how the cloth texture classes are
classified when only GelSight data is present. As shown in
Fig. 4, the classification performance of DMCA improves
as the output dimension becomes larger. As the output
dimension continues to increase, the accuracy of DMCA
tends to level off and can achieve a classification accuracy of
around 90%. The results show that in DMCA complementary
features can be learned from vision to help the tactile
modality discriminate the cloth textures. This is valuable
for applying the shared representations in the tactile texture
discrimination. As tactile data of different objects is not easy
to collect due to the high cost of sensor development and
time consuming data collection process, it is feasible to add
vision data to form a multimodal shared representation with
tactile modality so that we can reduce the efforts to collect
large volumes of tactile data.

We then look into how the cloth classes can be classified
when only camera images are available. As shown in Fig. 5,
a similar performance can be observed for DMCA. The clas-
sification performance of DMCA enjoys a dramatic increase
as the output dimension increases, and then levels off above
dimension20, achievingj a classification accuracy of 92.6%.
The results demonstrate that in DMCA complementary fea-
tures can also be learned from tactile modality to help vision
discriminate cloth textures.

Overall, the results show that the proposed DMCA learn-
ing scheme performs well on the application of tactile-vision
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Fig. 5: Cloth texture discrimination accuracy with camera test
images for the different numbers of shared space dimensions,
by applying DMCA to the bimodal data.

shared representations in either tactile or visual cloth texture
recognition. This confirms that MCA is a powerful tool not
only for hand-crafted features [13], but also for features
learned by deep networks. It has also been demonstrated
that inclusion of the other modal data in the learning phase
can improve the recognition performance when only one
modality is used in the test phase.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework for learning
joint latent space shared by two modalities, i.e., camera
vision and tactile data in our case. To test the proposed
framework, a set of experiments was conducted on a newly
collected ViTac dataset of both visual and tactile data for a
task of cloth texture recognition. Overall, we observe that
(1) both vision and tactile sensing modalities can achieve
a good recognition accuracy of more than 90% by using
the proposed DMCA method; and (2), the perception per-
formance of either vision or tactile sensing can be improved
by employing the shared representation space, compared to
learning from unimodal data. There are several directions
for future work: the proposed DMCA framework could
be applied in other applications, such as learning shared
representations from videos, audio soundtracks and subtitles;
or temporal information could be included in the latent space.
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