223 research outputs found

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition

    Evolutionary Dynamics of Co-Segregating Gene Clusters Associated with Complex Diseases

    Get PDF
    BACKGROUND: The distribution of human disease-associated mutations is not random across the human genome. Despite the fact that natural selection continually removes disease-associated mutations, an enrichment of these variants can be observed in regions of low recombination. There are a number of mechanisms by which such a clustering could occur, including genetic perturbations or demographic effects within different populations. Recent genome-wide association studies (GWAS) suggest that single nucleotide polymorphisms (SNPs) associated with complex disease traits are not randomly distributed throughout the genome, but tend to cluster in regions of low recombination. PRINCIPAL FINDINGS: Here we investigated whether deleterious mutations have accumulated in regions of low recombination due to the impact of recent positive selection and genetic hitchhiking. Using publicly available data on common complex diseases and population demography, we observed an enrichment of hitchhiked disease associations in conserved gene clusters subject to selection pressure. Evolutionary analysis revealed that these conserved gene clusters arose by multiple concerted rearrangements events across the vertebrate lineage. We observed distinct clustering of disease-associated SNPs in evolutionary rearranged regions of low recombination and high gene density, which harbor genes involved in immunity, that is, the interleukin cluster on 5q31 or RhoA on 3p21. CONCLUSIONS: Our results suggest that multiple lineage specific rearrangements led to a physical clustering of functionally related and linked genes exhibiting an enrichment of susceptibility loci for complex traits. This implies that besides recent evolutionary adaptations other evolutionary dynamics have played a role in the formation of linked gene clusters associated with complex disease traits

    Parasite Burden and CD36-Mediated Sequestration Are Determinants of Acute Lung Injury in an Experimental Malaria Model

    Get PDF
    Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36−/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality

    Social capital of venture capitalists and start-up funding

    Get PDF
    How does the social capital of venture capitalists (VCs) affect the funding of start-ups? By building on the rich social capital literature, we hypothesize a positive effect of VCs' social capital, derived from past syndication, on the amount of money that start-ups receive. Specifically, we argue that both structural and relational aspects of VCs' social networks provide VCs with superior access to information about current investment objects and opportunities to leverage them in the future, increasing their willingness to invest in these firms. Our empirical results, derived from a novel dataset containing more than 1,500 first funding rounds in the Internet and IT sector, strongly confirm our hypotheses. We discuss the implications of our findings for theories of venture capital and entrepreneurship, showing that the role and effect of VCs' social capital on start-up firms may be more complex than previously argued in the literature

    P2 receptors are involved in the mediation of motivation-related behavior

    Get PDF
    The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli

    Friends with Benefits: Social Coupons as a Strategy to Enhance Customers’ Social Empowerment

    Get PDF
    Businesses often seek to leverage customers’ social networks to acquire new customers and stimulate word-of-mouth recommendations. While customers make brand recommendations for various reasons (e.g., incentives, reputation enhancement), they are also motivated by a desire for social empowerment—to feel an impact on others. In several multi-method studies, we show that facilitating sharing of social coupons (i.e., coupon sets that include one for self-use and one to be shared) is a unique marketing strategy that facilitates social empowerment. Firms benefit from social coupons because customers who share spend more and report greater purchase intentions than those who do not. Furthermore, we demonstrate that social coupons are most effective when the sharer’s brand relationship is new versus established. For customers with an established relationship, sharing with a receiver who also has an established relationship maximizes potential impact. Together, these studies connect social empowerment to relationship marketing and provide guidance to managers targeting social coupons

    Outcomes of WHO-conforming, longer, all-oral multidrug-resistant TB regimens and analysis implications

    Get PDF
    BACKGROUND: Evidence of the effectiveness of the WHO-recommended design of longer individualized regimens for multidrug- or rifampicin-resistant TB (MDR/RR-TB) is limited.OBJECTIVES: To report end-of-treatment outcomes for MDR/RR-TB patients from a 2015-2018 multi-country cohort that received a regimen consistent with current 2022 WHO updated recommendations and describe the complexities of comparing regimens.METHODS: We analyzed a subset of participants from the endTB Observational Study who initiated a longer MDR/RR-TB regimen that was consistent with subsequent 2022 WHO guidance on regimen design for longer treatments. We excluded individuals who received an injectable agent or who received fewer than four likely effective drugs.RESULTS: Of the 759 participants analyzed, 607 (80.0%, 95% CI 77.0-82.7) experienced successful end-of-treatment outcomes. The frequency of success was high across groups, whether stratified on number of Group A drugs or fluoroquinolone resistance, and ranged from 72.1% to 90.0%. Regimens were highly variable regarding composition and the duration of individual drugs.CONCLUSIONS: Longer, all-oral, individualized regimens that were consistent with 2022 WHO guidance on regimen design had high frequencies of treatment success. Heterogeneous regimen compositions and drug durations precluded meaningful comparisons. Future research should examine which combinations of drugs maximize safety/tolerability and effectiveness

    Dense sampling of bird diversity increases power of comparative genomics (vol 587, pg 252, 2020)

    Get PDF
    Publishe
    corecore