21 research outputs found

    Markedly Divergent Tree Assemblage Responses to Tropical Forest Loss and Fragmentation across a Strong Seasonality Gradient

    Get PDF
    We examine the effects of forest fragmentation on the structure and composition of tree assemblages within three seasonal and aseasonal forest types of southern Brazil, including evergreen, Araucaria, and deciduous forests. We sampled three southernmost Atlantic Forest landscapes, including the largest continuous forest protected areas within each forest type. Tree assemblages in each forest type were sampled within 10 plots of 0.1 ha in both continuous forests and 10 adjacent forest fragments. All trees within each plot were assigned to trait categories describing their regeneration strategy, vertical stratification, seed-dispersal mode, seed size, and wood density. We detected differences among both forest types and landscape contexts in terms of overall tree species richness, and the density and species richness of different functional groups in terms of regeneration strategy, seed dispersal mode and woody density. Overall, evergreen forest fragments exhibited the largest deviations from continuous forest plots in assemblage structure. Evergreen, Araucaria and deciduous forests diverge in the functional composition of tree floras, particularly in relation to regeneration strategy and stress tolerance. By supporting a more diversified light-demanding and stress-tolerant flora with reduced richness and abundance of shade-tolerant, old-growth species, both deciduous and Araucaria forest tree assemblages are more intrinsically resilient to contemporary human-disturbances, including fragmentation-induced edge effects, in terms of species erosion and functional shifts. We suggest that these intrinsic differences in the direction and magnitude of responses to changes in landscape structure between forest types should guide a wide range of conservation strategies in restoring fragmented tropical forest landscapes worldwide

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions

    Get PDF
    Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H2' = 0.37±0.10, mean ± SD) and similar nestedness (NODF = 0.56±0.12) than pollination networks. All networks were modular (M = 0.32±0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10) and plants (R = 0.68±0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks

    Breaking Functional Connectivity into Components: A Novel Approach Using an Individual-Based Model, and First Outcomes

    Get PDF
    Landscape connectivity is a key factor determining the viability of populations in fragmented landscapes. Predicting ‘functional connectivity’, namely whether a patch or a landscape functions as connected from the perspective of a focal species, poses various challenges. First, empirical data on the movement behaviour of species is often scarce. Second, animal-landscape interactions are bound to yield complex patterns. Lastly, functional connectivity involves various components that are rarely assessed separately. We introduce the spatially explicit, individual-based model FunCon as means to distinguish between components of functional connectivity and to assess how each of them affects the sensitivity of species and communities to landscape structures. We then present the results of exploratory simulations over six landscapes of different fragmentation levels and across a range of hypothetical bird species that differ in their response to habitat edges. i) Our results demonstrate that estimations of functional connectivity depend not only on the response of species to edges (avoidance versus penetration into the matrix), the movement mode investigated (home range movements versus dispersal), and the way in which the matrix is being crossed (random walk versus gap crossing), but also on the choice of connectivity measure (in this case, the model output examined). ii) We further show a strong effect of the mortality scenario applied, indicating that movement decisions that do not fully match the mortality risks are likely to reduce connectivity and enhance sensitivity to fragmentation. iii) Despite these complexities, some consistent patterns emerged. For instance, the ranking order of landscapes in terms of functional connectivity was mostly consistent across the entire range of hypothetical species, indicating that simple landscape indices can potentially serve as valuable surrogates for functional connectivity. Yet such simplifications must be carefully evaluated in terms of the components of functional connectivity they actually predict

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Neotropical bats that co-habit with humans function as dead-end hosts for dengue virus

    Get PDF
    Several studies have shown Dengue Virus (DENV) nucleic acids and/or antibodies present in Neotropical wildlife including bats, suggesting that some bat species may be susceptible to DENV infection. Here we aim to elucidate the role of house-roosting bats in the DENV transmission cycle. Bats were sampled in households located in high and low dengue incidence regions during rainy and dry seasons in Costa Rica. We captured 318 bats from 12 different species in 29 households. Necropsies were performed in 205 bats to analyze virus presence in heart, lung, spleen, liver, intestine, kidney, and brain tissue. Histopathology studies from all organs showed no significant findings of disease or infection. Sera were analyzed by PRNT90 for a seroprevalence of 21.2% (51/241), and by PCR for 8.8% (28/318) positive bats for DENV RNA. From these 28 bats, 11 intestine samples were analyzed by RT-PCR. Two intestines were DENV RNA positive for the same dengue serotype detected in blood. Viral isolation from all positive organs or blood was unsuccessful. Additionally, viral load analyses in positive blood samples by qRT-PCR showed virus concentrations under the minimal dose required for mosquito infection. Simultaneously, 651 mosquitoes were collected using EVS-CO2 traps and analyzed for DENV and feeding preferences (bat cytochrome b). Only three mosquitoes were found DENV positive and none was positive for bat cytochrome b. Our results suggest an accidental presence of DENV in bats probably caused from oral ingestion of infected mosquitoes. Phylogenetic analyses suggest also a spillover event from humans to bats. Therefore, we conclude that bats in these urban environments do not sustain DENV amplification, they do not have a role as reservoirs, but function as epidemiological dead end hosts for this virus.UCR::Vicerrectoría de Docencia::Salud::Facultad de MicrobiologíaUCR::Vicerrectoría de Docencia::Ciencias Básicas::Facultad de Ciencias::Escuela de BiologíaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET
    corecore