38 research outputs found
Genetic dissection of NK cell responses
The association of Natural Killer (NK) cell deficiencies with disease susceptibility has established a central role for NK cells in host defence. In this context, genetic approaches have been pivotal in elucidating and characterizing the molecular mechanisms underlying NK cell function. To this end, homozygosity mapping and linkage analysis in humans have identified mutations that impact NK cell function and cause life-threatening diseases. However, several critical restrictions accompany genetic studies in humans. Studying NK cell pathophysiology in a mouse model has therefore proven a useful tool. The relevance of the mouse model is underscored by the similarities that exist between cell-structure-sensing receptors and the downstream signaling that leads to NK cell activation. In this review, we provide an overview of how human and mouse quantitative trait locis (QTLs) have facilitated the identification of genes that modulate NK cell development, recognition, and killing of target cells
NK Cell Receptor/H2-Dk–Dependent Host Resistance to Viral Infection Is Quantitatively Modulated by H2q Inhibitory Signals
The cytomegalovirus resistance locus Cmv3 has been linked to an
epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene
and the major histocompatibility complex class I (MHC-I) locus. To demonstrate
the interaction between Cmv3 and
H2k, we generated double congenic mice between
MA/My and BALB.K mice and an F2 cross between FVB/N
(H-2q) and BALB.K
(H2k) mice, two strains susceptible to mouse
cytomegalovirus (MCMV). Only mice expressing H2k in
conjunction with Cmv3MA/My or
Cmv3FVB were resistant to MCMV infection.
Subsequently, an F3 cross was carried out between transgenic
FVB/H2-Dk and MHC-I deficient mice in which
only the progeny expressing Cmv3FVB and a single
H2-Dk class-I molecule completely controlled
MCMV viral loads. This phenotype was shown to be NK cell–dependent and
associated with subsequent NK cell proliferation. Finally, we demonstrated that
a number of H2q alleles influence the expression
level of H2q molecules, but not intrinsic functional
properties of NK cells; viral loads, however, were quantitatively proportional
to the number of H2q alleles. Our results support a
model in which H-2q molecules convey Ly49-dependent
inhibitory signals that interfere with the action of
H2-Dk on NK cell activation against MCMV
infection. Thus, the integration of activating and inhibitory signals emanating
from various MHC-I/NK cell receptor interactions regulates NK
cell–mediated control of viral load
Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC
Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo
Estrogen-related receptor alpha (ERR?) is a key regulator of intestinal homeostasis and protects against colitis
The estrogen-related receptor alpha (ERR?) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERR? is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERR? in the intestine. We found that mice deficient in ERR? were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERR? lead to a reduction in microbiome ?-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERR? mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERR? in the gut and extends our current knowledge of nuclear receptors implicated in IBD
Bisphosphoglycerate mutase deficiency protects against cerebral malaria and severe malaria-induced anemia
The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host’s stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target
Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection
Natural killer (NK) cells have the potential to deliver both direct antimicrobial effects and regulate adaptive immune responses, but NK cell yields have been reported to vary greatly during different viral infections. Activating receptors, including the Ly49H molecule recognizing mouse cytomegalovirus (MCMV), can stimulate NK cell expansion. To define Ly49H's role in supporting NK cell proliferation and maintenance under conditions of uncontrolled viral infection, experiments were performed in Ly49h−/−, perforin 1 (Prf1)−/−, and wild-type (wt) B6 mice. NK cell numbers were similar in uninfected mice, but relative to responses in MCMV-infected wt mice, NK cell yields declined in the absence of Ly49h and increased in the absence of Prf1, with high rates of proliferation and Ly49H expression on nearly all cells. The expansion was abolished in mice deficient for both Ly49h and Prf1 (Ly49h−/−Prf1−/−), and negative consequences for survival were revealed. The Ly49H-dependent protection mechanism delivered in the absence of Prf1 was a result of interleukin 10 production, by the sustained NK cells, to regulate the magnitude of CD8 T cell responses. Thus, the studies demonstrate a previously unappreciated critical role for activating receptors in keeping NK cells present during viral infection to regulate adaptive immune responses