19 research outputs found
Declining Burden of Malaria Over two Decades in a Rural Community of Muheza District, North-Eastern Tanzania.
The recently reported declining burden of malaria in some African countries has been attributed to scaling-up of different interventions although in some areas, these changes started before implementation of major interventions. This study assessed the long-term trends of malaria burden for 20 years (1992--2012) in Magoda and for 15 years in Mpapayu village of Muheza district, north-eastern Tanzania, in relation to different interventions as well as changing national malaria control policies.\ud
Repeated cross-sectional surveys recruited individuals aged 0 -- 19 years from the two villages whereby blood smears were collected for detection of malaria parasites by microscopy. Prevalence of Plasmodium falciparum infections and other indices of malaria burden (prevalence of anaemia, splenomegaly and gametocytes) were compared across the years and between the study villages. Major interventions deployed including mobile clinic, bed nets and other research activities, and changes in national malaria control policies were also marked. In Magoda, the prevalence of P. falciparum infections initially decreased between 1992 and 1996 (from 83.5 to 62.0%), stabilized between 1996 and 1997, and further declined to 34.4% in 2004. A temporary increase between 2004 and 2008 was followed by a progressive decline to 7.2% in 2012, which is more than 10-fold decrease since 1992. In Mpapayu (from 1998), the highest prevalence was 81.5% in 1999 and it decreased to 25% in 2004. After a slight increase in 2008, a steady decline followed, reaching <5% from 2011 onwards. Bed net usage was high in both villages from 1999 to 2004 (>=88%) but it decreased between 2008 and 2012 (range, 28% - 68%). After adjusting for the effects of bed nets, age, fever and year of study, the risk of P. falciparum infections decreased significantly by >=97% in both villages between 1999 and 2012 (p < 0.001). The prevalence of splenomegaly (>40% to <1%) and gametocytes (23% to <1%) also decreased in both villages.Discussion and conclusionsA remarkable decline in the burden of malaria occurred between 1992 and 2012 and the initial decline (1992 -- 2004) was most likely due to deployment of interventions, such as bed nets, and better services through research activities. Apart from changes of drug policies, the steady decline observed from 2008 occurred when bed net coverage was low suggesting that other factors contributed to the most recent pattern. These results suggest that continued monitoring is required to determine causes of the changing malaria epidemiology and also to monitor the progress towards maintaining low malaria transmission and reaching related millennium development goals
IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes
Many human cells can sense the presence of exogenous DNA during infection though the cytosolic DNA receptor cyclic GMP-AMP synthase (cGAS), which produces the second messenger cyclic GMP-AMP (cGAMP). Other putative DNA receptors have been described, but whether their functions are redundant, tissue-specific or integrated in the cGAS-cGAMP pathway is unclear. Here we show that interferon-Îł inducible protein 16 (IFI16) cooperates with cGAS during DNA sensing in human keratinocytes, as both cGAS and IFI16 are required for the full activation of an innate immune response to exogenous DNA and DNA viruses. IFI16 is also required for the cGAMP-induced activation of STING, and interacts with STING to promote STING phosphorylation and translocation. We propose that the two DNA sensors IFI16 and cGAS cooperate to prevent the spurious activation of the type I interferon response
Measurement of the electron reconstruction efficiency at LHCb
The single electron track-reconstruction efficiency is calibrated using a sample corresponding to 1.3 fbâ1 of pp collision data recorded with the LHCb detector in 2017. This measurement exploits B+â J/Ï(e+eâ)K+ decays, where one of the electrons is fully reconstructed and paired with the kaon, while the other electron is reconstructed using only the information of the vertex detector. Despite this partial reconstruction, kinematic and geometric constraints allow the B meson mass to be reconstructed and the signal to be well separated from backgrounds. This in turn allows the electron reconstruction efficiency to be measured by matching the partial track segment found in the vertex detector to tracks found by LHCb's regular reconstruction algorithms. The agreement between data and simulation is evaluated, and corrections are derived for simulated electrons in bins of kinematics. These correction factors allow LHCb to measure branching fractions involving single electrons with a systematic uncertainty below 1%
Transcriptome sequences spanning key developmental states as a resource for the study of the cestode Schistocephalus solidus, a threespine stickleback parasite
BACKGROUND: Schistocephalus solidus is a well-established model organism for studying the complex life cycle of cestodes and the mechanisms underlying host-parasite interactions. However, very few large-scale genetic resources for this species are available. We have sequenced and de novo-assembled the transcriptome of S. solidus using tissues from whole worms at three key developmental states - non-infective plerocercoid, infective plerocercoid and adult plerocercoid - to provide a resource for studying the evolution of complex life cycles and, more specifically, how parasites modulate their interactions with their hosts during development. FINDINGS: The de novo transcriptome assembly reconstructed the coding sequence of 10,285 high-confidence unigenes from which 24,765 non-redundant transcripts were derived. 7,920 (77Â %) of these unigenes were annotated with a protein name and 7,323 (71Â %) were assigned at least one Gene Ontology term. Our raw transcriptome assembly (unfiltered transcripts) covers 92Â % of the predicted transcriptome derived from the S. solidus draft genome assembly currently available on WormBase. It also provides new ecological information and orthology relationships to further annotate the current WormBase transcriptome and genome. CONCLUSION: This large-scale transcriptomic dataset provides a foundation for studies on how parasitic species with complex life cycles modulate their response to changes in biotic and abiotic conditions experienced inside their various hosts, which is a fundamental objective of parasitology. Furthermore, this resource will help in the validation of the S solidus gene features that have been predicted based on genomic sequence