2,303 research outputs found

    Numerical Study of the Seismic Response of an Urban Overpass Support System

    Get PDF
    A strategic urban overpass is to be built in the so-called transition and hill zones in Mexico City. The subsoil conditions at these zones typically consist on soft to stiff clay and medium to dense sand deposits, randomly interbedded by loose sand lenses, and underlain by rock formations that may outcrop in some areas. Several critical supports of this overpass are going to be instrumented with accelerometers, inclinometers and extensometers to assess their seismic performance during future earthquakes and to generate a database to calibrate soil-structure-interaction numerical models. This paper presents the seismic performance evaluation of one of these supports. The support foundation is a 3.6 by 4.6 m mat, structurally connected to four cast-in-place 0.80 m diameter piles. A finite elements model of the soil-foundation-structure system was developed. Initially, the model was calibrated analyzing the seismic response that an instrumented bridge support exhibited during the June 15th, 1999 Tehuacan (Mw=7) Earthquake. This bridge is located also within the surroundings of Mexico City, but at the lake zone, where highly compressible clays are found. The computed response was compared with the measured response in the free field, box foundation, and structure. Once the model prediction capabilities were established, the seismic response of the critical support of the urban overpass was evaluated for the design earthquake in terms of transfer functions and displacement time histories

    Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples

    Full text link
    Recently ({\em Class. Quant. Grav.} {\bf 20} 625-664) the concept of {\em causal mapping} between spacetimes --essentially equivalent in this context to the {\em chronological map} one in abstract chronological spaces--, and the related notion of {\em causal structure}, have been introduced as new tools to study causality in Lorentzian geometry. In the present paper, these tools are further developed in several directions such as: (i) causal mappings --and, thus, abstract chronological ones-- do not preserve two levels of the standard hierarchy of causality conditions (however, they preserve the remaining levels as shown in the above reference), (ii) even though global hyperbolicity is a stable property (in the set of all time-oriented Lorentzian metrics on a fixed manifold), the causal structure of a globally hyperbolic spacetime can be unstable against perturbations; in fact, we show that the causal structures of Minkowski and Einstein static spacetimes remain stable, whereas that of de Sitter becomes unstable, (iii) general criteria allow us to discriminate different causal structures in some general spacetimes (e.g. globally hyperbolic, stationary standard); in particular, there are infinitely many different globally hyperbolic causal structures (and thus, different conformal ones) on R2\R^2, (iv) plane waves with the same number of positive eigenvalues in the frequency matrix share the same causal structure and, thus, they have equal causal extensions and causal boundaries.Comment: 33 pages, 9 figures, final version (the paper title has been changed). To appear in Classical and Quantum Gravit

    EphrinA4 plays a critical role in α4 and αL mediated survival ofhuman CLL cells during extravasation

    Get PDF
    A role of endothelial cells in the survival of CLL cells during extravasation is presently unknown. Herein we show that CLL cells but not normal B cells can receive apoptotic signals through physical contact with TNF-α activated endothelium impairing survival in transendothelial migration (TEM) assays. In addition, the CLL cells of patients having lymphadenopathy (LApos) show a survival advantage during TEM that can be linked to increased expression of α4 and αL integrin chains. Within this context, ephrinA4 expressed on the surface of CLL cells sequestrates integrins and inactivates them resulting in reduced adhesion and inhibition of apoptotic/survival signals through them. In agreement, ephrinA4 silencing resulted in increased survival of CLL cells of LApos patients but not LA neg patients. Similarly was observed when a soluble ephrinA4 isoform was added to TEM assays strongly suggesting that accumulation of this isoform in the serum of LApos patients could contribute to CLL cells dissemination and survival in vivo. In supporting, CLL lymphadenopathies showed a preferential accumulation of apoptotic CLL cells around high endothelial venules lacking ephrinA4. Moreover, soluble ephrinA4 isolated from sera of patients increased the number and viability of CLL cells recovered from the lymph nodes of adoptively transferred mice. Finally, we present evidence suggesting that soluble ephrinA4 mediated survival during TEM could enhance a transcellular TEM route of the CLL cells. Together these findings point to an important role of ephrinA4 in the nodal dissemination of CLL cells governing extravasation and survival

    Downregulation of protein tyrosine phosphatase PTPL1 alters cell cycle and upregulates invasion-related genes in prostate cancer cells

    Get PDF
    The final publication is available at link.springer.comPTPL1, a non-receptor type protein tyrosine phosphatase, has been involved in the regulation of apoptosis and invasiveness of various tumour cell types, but its role in prostate cancer remained to be investigated. We report here that downregulation of PTPL1 by small interfering RNA in PC3 cells decreases cell proliferation and concomitantly reduces the expression of cell cycle-related proteins such as cyclins E and B1, PCNA, PTTG1 and phospho-histone H3. PTPL1 downregulation also increases the invasion ability of PC3 cells through Matrigel coated membranes. cDNA array of PTPL1-silenced PC3 cells versus control cells showed an upregulation of invasion-related genes such as uPA, uPAR, tPA, PAI-1, integrin α6 and osteopontin. This increased expression was also confirmed in PTPL1-silenced DU145 prostate cancer cells by quantitative real time PCR and western blot. These findings suggest that PTPL1 is an important mediator of central cellular processes such as proliferation and invasion. © 2012 Springer Science+Business Media B.V.This work was supported by Grants from the Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, Spain (FIS PI10/02026 and SAF2008-05046-C02-02), ISCIIIRETIC-RD06/0020-FEDER, Consejería de Salud (PI-2009-0589, AI-2010-003 to M.A.J.), and Consejería de Innovación, Ciencia y Empresa (CTS-6243), Junta de Andalucía (06/189, PI-2009-0589, and AI-2010-003 to M. A. J.). C. C. was supported by a pre-doctoral Grant from the Spanish Ministerio de Educación (F.P.I.: BES200612419) co-financiated by Fondo Social Europeo. C. S. was supported by a contract from Instituto de Salud Carlos III/FIS and Fundación Progreso y Salud, Consejería de Salud, Junta de Andalucía, Miguel Servet Program.Peer Reviewe

    Coccolithophore biodiversity controls carbonate export in the Southern Ocean

    Get PDF
    Southern Ocean waters are projected to undergo profound changes in their physical and chemical properties in the coming decades. Coccolithophore blooms in the Southern Ocean are thought to account for a major fraction of the global marine calcium carbonate (CaCO3) production and export to the deep sea. Therefore, changes in the composition and abundance of Southern Ocean coccolithophore populations are likely to alter the marine carbon cycle, with feedbacks to the rate of global climate change. However, the contribution of coccolithophores to CaCO3 export in the Southern Ocean is uncertain, particularly in the circumpolar subantarctic zone that represents about half of the areal extent of the Southern Ocean and where coccolithophores are most abundant. Here, we present measurements of annual CaCO3 flux and quantitatively partition them amongst coccolithophore species and heterotrophic calcifiers at two sites representative of a large portion of the subantarctic zone. We find that coccolithophores account for a major fraction of the annual CaCO3 export, with the highest contributions in waters with low algal biomass accumulations. Notably, our analysis reveals that although Emiliania huxleyi is an important vector for CaCO3 export to the deep sea, less abundant but larger species account for most of the annual coccolithophore CaCO3 flux. This observation contrasts with the generally accepted notion that high particulate inorganic carbon accumulations during the austral summer in the subantarctic Southern Ocean are mainly caused by E. huxleyi blooms. It appears likely that the climate-induced migration of oceanic fronts will initially result in the poleward expansion of large coccolithophore species increasing CaCO3 production. However, subantarctic coccolithophore populations will eventually diminish as acidification overwhelms those changes. Overall, our analysis emphasizes the need for species-centred studies to improve our ability to project future changes in phytoplankton communities and their influence on marine biogeochemical cycles.info:eu-repo/semantics/publishedVersio

    Ethanol-Induced Oxidative Stress Modifies Inflammation and Angiogenesis Biomarkers in Retinal Pigment Epithelial Cells (ARPE-19): Role of CYP2E1 and its Inhibition by Antioxidants

    Get PDF
    The retinal pigment epithelium (RPE) plays a key role in retinal health, being essential for the protection against reactive oxygen species (ROS). Nevertheless, excessive oxidative stress can induce RPE dysfunction, promoting visual loss. Our aim is to clarify the possible implication of CYP2E1 in ethanol (EtOH)-induced oxidative stress in RPE alterations. Despite the increase in the levels of ROS, measured by fluorescence probes, the RPE cells exposed to the lowest EtOH concentrations were able to maintain cell survival, measured by the Cell Proliferation Kit II (XTT). However, EtOH-induced oxidative stress modified inflammation and angiogenesis biomarkers, analyzed by proteome array, ELISA, qPCR and Western blot. The highest EtOH concentration used stimulated a large increase in ROS levels, upregulating the cytochrome P450-2E1 (CYP2E1) and promoting cell death. The use of antioxidants such as N-acetylcysteine (NAC) and diallyl sulfide (DAS), which is also a CYP2E1 inhibitor, reverted cell death and oxidative stress, modulating also the upstream angiogenesis and inflammation regulators. Because oxidative stress plays a central role in most frequent ocular diseases, the results herein support the proposal that CYP2E1 upregulation could aggravate retinal degeneration, especially in those patients with high baseline oxidative stress levels due to their ocular pathology and should be considered as a risk factor.LVG was recipient of a pre-doctoral fellowship (EDUCV-PRE-2015-006). Financial support by grant #94/2016 from the PROMETEO program from the Generalitat Valenciana, Valencia, Spain, to FJR

    Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt's lymphoma. A cytogenetic and comparative genomic hybridization study

    Get PDF
    Comparative genomic hybridization (CGH) studies have demonstrated a high incidence of chromosomal imbalances in non-Hodgkin's lymphoma. However, the information on the genomic imbalances in Burkitt's Lymphoma (BL) is scanty. Conventional cytogenetics was performed in 34 cases, and long-distance PCR for t(8;14) was performed in 18 cases. A total of 170 changes were present with a median of four changes per case (range 1-22). Gains of chromosomal material (143) were more frequent than amplifications (5) or losses (22). The most frequent aberrations were gains on chromosomes 12q (26%), Xq (22%), 22q (20%), 20q (17%) and 9q (15%). Losses predominantly involved chromosomes 13q (17%) and 4q (9%). High-level amplifications were present in the regions 1q23-31 (three cases), 6p12-p25 and 8p22-p23. Upon comparing BL vs Burkitt's cell leukemia (BCL), the latter had more changes (mean 4.3 +/- 2.2) than BL (mean 2.7 +/- 3.2). In addition, BCL cases showed more frequently gains on 8q, 9q, 14q, 20q, and 20q, 9q, 8q and 14q, as well as losses on 13q and 4q. Concerning outcome, the presence of abnormalities on 1q (ascertained either by cytogenetics or by CGH), and imbalances on 7q (P=0.01) were associated with a short survival

    Chloride Nutrition Regulates development, Water Balance and Drought Resistance in Plants

    Get PDF
    6 páginas.-- 5 figuras.-- 9 referencias.-- Poster presentado en el XII Luso-Spanish Symposium on Plant Water Relations – Water to Feed the World. 30th of September – 3rd of October (Evora) PortugalCl- is a strange micronutrient since actual Cl- concentration in plants is about two orders of magnitude higher than the content required as essential micronutrient. This accumulation requires a high cost of energy, and since Cl- is a major osmotically active solute in the vacuole, we propose that Cl- plays a role in the regulation of water balance in plants. We show here that, when accumulated to macronutrient levels, Cl- specifically regulates leaf cell elongation and water balance parameters, improving water relations at both the leaf tissue and the whole plant levels, increasing drought resistance in higher plants.This work was supported by the Spanish Ministry of Science and Innovation-FEDER grant AGL2009-08339/AGR.Peer Reviewe
    corecore