17 research outputs found

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Data from: Signatures of volcanism and aridity in the evolution of an insular pine (Pinus canariensis Chr. Sm. Ex DC in Buch)

    No full text
    Oceanic islands of volcanic origin provide useful templates for the study of evolution because they are subjected to recurrent perturbations that generate steep environmental gradients that may promote adaptation. Here we combine population genetic data from nuclear genes with the analysis of environmental variation and phenotypic data from common gardens to disentangle the confounding effects of demography and selection to identify the factors of importance for the evolution of the insular pine P. canariensis. Eight nuclear genes were partially sequenced in a survey covering the entire species range, and phenotypic traits were measured in four common gardens from contrasting environments. The explanatory power of population substrate age and environmental indices were assessed against molecular and phenotypic diversity estimates. In addition, neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. Two key factors in the evolution of the species were identified: (1) recurrent volcanic activity has left an imprint in the genetic diversity of the nuclear genes; (2) aridity in southern slopes promotes local adaptation in the driest localities of P. canariensis, despite high levels of gene flow among populations
    corecore