43 research outputs found

    Global late Quaternary megafauna extinctions linked to humans, not climate change

    Get PDF
    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary

    Exceptional Record of Mid-Pleistocene Vertebrates Helps Differentiate Climatic from Anthropogenic Ecosystem Perturbations

    Get PDF
    Mid-Pleistocene vertebrates in North America are scarce but important for recognizing the ecological effects of climatic change in the absence of humans. We report on a uniquely rich mid-Pleistocene vertebrate sequence from Porcupine Cave, Colorado, which records at least 127 species and the earliest appearances of 30 mammals and birds. By analyzing \u3e20,000 mammal fossils in relation to modern species and independent climatic proxies, we determined how mammal communities reacted to presumed glacial-interglacial transitions between 1,000,000 and 600,000 years ago. We conclude that climatic warming primarily affected mammals of lower trophic and size categories, in contrast to documented human impacts on higher trophic and size categories historically. Despite changes in species composition and minor changes in small-mammal species richness evident at times of climatic change, overall structural stability of mammal communities persisted \u3e600,000 years before human impacts

    Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California Birds?

    Get PDF
    By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages

    Surviving the ice: Northern refugia and postglacial colonization

    No full text
    The contemporary distribution of biological diversity cannot be understood without knowledge of how organisms responded to the geological and climatic history of Earth. In particular, Quaternary expansions and contractions of glacial ice sheets are thought to have played an important role in shaping the distribution of biodiversity among current populations in the north-temperate region. In the central U.S., fossil and palynological data provide support for the maintenance of a large southeastern refuge during the last glacial maximum, and many temperate organisms are believed to have responded to glacial expansion by shifting their ranges to southern refugia and recolonizing northward to track the receding ice sheets. Thus, organisms are assumed to track favorable climates, and species ranges are expected to have shifted significantly. Here we present data from a deciduous forest vertebrate, the eastern chipmunk (Tamias striatus) in the central U.S., indicating the maintenance of multiple refugial sources as well as a southward expansion from a northern refugium. These results challenge the view that, during glacial maxima, organisms must have migrated south out of their ranges to track favorable climates

    Ecological changes in Miocene mammalian record show impact of prolonged climatic forcing

    Get PDF
    Geohistorical records reveal the long-term impacts of climate change on ecosystem structure. A 5-myr record of mammalian faunas from floodplain ecosystems of South Asia shows substantial change in species richness and ecological structure in relation to vegetation change as documented by stable isotopes of C and O from paleosols. Between 8.5 and 6.0 Ma, C4 savannah replaced C3 forest and woodland. Isotopic historical trends for 27 mammalian herbivore species, in combination with ecomorphological data from teeth, show three patterns of response. Most forest frugivores and browsers maintained their dietary habits and disappeared. Other herbivores altered their dietary habits to include increasing amounts of C4 plants and persisted for >1 myr during the vegetation transition. The few lineages that persisted through the vegetation transition show isotopic enrichment of δ13C values over time. These results are evidence for long-term climatic forcing of vegetation structure and mammalian ecological diversity at the subcontinental scale

    Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary

    No full text
    The biotic consequences of climate change have attracted considerable attention. In particular, the “refugial debate” centers on the possible retraction of habitats to limited areas that may have served as refuges for many associated species, especially during glaciations of the Quaternary. One prediction of such scenarios is that populations must have experienced substantial growth accompanying climatic amelioration and the occupation of newly expanded habitats. We used coalescence theory to examine the genetic evidence, or lack thereof, for late Pleistocene refugia of boreal North American and tropical Amazonian mammals. We found substantial and concordant evidence of demographic expansion in North American mammals, particularly at higher latitudes. In contrast, small mammals from western Amazonia appear to have experienced limited or no demographic expansion after the Late Pleistocene. Thus, demographic responses to climate change can be tracked genetically and appear to vary substantially across the latitudinal gradient of biotic diversity
    corecore