11 research outputs found

    Incidence of Bloodstream Infections Due to Candida Species and In Vitro Susceptibilities of Isolates Collected from 1998 to 2000 in a Population-Based Active Surveillance Program

    No full text
    To determine the incidence of Candida bloodstream infections (BSI) and antifungal drug resistance, population-based active laboratory surveillance was conducted from October 1998 through September 2000 in two areas of the United States (Baltimore, Md., and the state of Connecticut; combined population, 4.7 million). A total of 1,143 cases were detected, for an average adjusted annual incidence of 10 per 100,000 population or 1.5 per 10,000 hospital days. In 28% of patients, Candida BSI developed prior to or on the day of admission; only 36% of patients were in an intensive care unit at the time of diagnosis. No fewer than 78% of patients had a central catheter in place at the time of diagnosis, and 50% had undergone surgery within the previous 3 months. Candida albicans comprised 45% of the isolates, followed by C. glabrata (24%), C. parapsilosis (13%), and C. tropicalis (12%). Only 1.2% of C. albicans isolates were resistant to fluconazole (MIC, ≄64 ÎŒg/ml), compared to 7% of C. glabrata isolates and 6% of C. tropicalis isolates. Only 0.9% of C. albicans isolates were resistant to itraconazole (MIC, ≄1 ÎŒg/ml), compared to 19.5% of C. glabrata isolates and 6% of C. tropicalis isolates. Only 4.3% of C. albicans isolates were resistant to flucytosine (MIC, ≄32 ÎŒg/ml), compared to <1% of C. parapsilosis and C. tropicalis isolates and no C. glabrata isolates. As determined by E-test, the MICs of amphotericin B were ≄0.38 ÎŒg/ml for 10% of Candida isolates, ≄1 ÎŒg/ml for 1.7% of isolates, and ≄2 ÎŒg/ml for 0.4% of isolates. Our findings highlight changes in the epidemiology of Candida BSI in the 1990s and provide a basis upon which to conduct further studies of selected high-risk subpopulations

    Quantifying prion disease penetrance using large population control cohorts

    Get PDF
    More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance-the probability that a carrier of the purported disease-causing genotype will indeed develop the disease-is generally unknown. We assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30 times more common in the population than expected on the basis of genetic prion disease prevalence. Although some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1 to 100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, a finding that supports the safety of therapeutic suppression of prion protein expression

    Quantifying prion disease penetrance using large population control cohorts

    No full text
    Copyrigh

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    No full text

    Leichenerscheinungen und Todeszeitbestimmung

    No full text

    RA-MAP, molecular immunological landscapes in early rheumatoid arthritis and healthy vaccine recipients

    No full text
    corecore