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Abstract

More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the 

penetrance - the probability that a carrier of the purported disease-causing genotype will indeed 

develop the disease - is generally unknown. Here we assess the impact of variants in the prion 

protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 

population control exomes, and 531,575 individuals genotyped by 23andMe, Inc. We show that 

missense variants in PRNP previously reported to be pathogenic are at least 30× more common in 

the population than expected based on genetic prion disease prevalence. While some of this excess 

can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine 

effects on disease susceptibility but confer lifetime risks ranging from <0.1% to ~100%. We also 

show that truncating variants in PRNP have position-dependent effects, with true loss-of-function 

alleles found in healthy older individuals, supporting the safety of therapeutic suppression of prion 

protein expression.

INTRODUCTION

The study of pedigrees with Mendelian disease has been tremendously successful in 

identifying variants that contribute to severe inherited disorders (1–3). Causal variant 

discovery is enabled by selective ascertainment of affected individuals, and especially of 

multiplex families. Although efficient from a gene discovery perspective, the resulting 

ascertainment bias confounds efforts to accurately estimate the penetrance of disease-

causing variants, with profound implications for genetic counseling (4–7). The development 

of large-scale genotyping and sequencing methods has recently made it tractable to perform 

unbiased assessments of penetrance in population controls. In several instances, such studies 
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have suggested that previously reported Mendelian variants, as a class, are substantially less 

penetrant than had been believed (8–11). To date, however, all of these studies have been 

limited to relatively prevalent (>0.1%) diseases, and point estimates of the penetrance of 

individual variants have been limited to large copy number variations (8, 11).

Here we demonstrate the use of large-scale population data to infer the penetrance of 

variants in rare, dominant, monogenic disease, using the example of prion diseases. These 

invariably fatal neurodegenerative disorders are caused by misfolding of the prion protein 

(PrP, the product of PRNP) (12) and have an annual incidence of 1 to 2 cases per 1 million 

population (13). A small, albeit infamous, minority of cases (<1% in recent years (14, 15)) 

are acquired through dietary or iatrogenic routes. The majority (~85%) of cases are defined 

as sporadic, occurring in individuals with two wild-type PRNP alleles and no known 

environmental exposures. Finally, ~15% of cases occur in individuals with rare, typically 

heterozygous, coding variants in PRNP, including missense variants, truncating variants, 

and octapeptide repeat insertions or deletions (Table S1). Centralized ascertainment of cases 

by national surveillance centers (Materials and Methods) makes prion disease a good test 

case for using reference datasets to assess the penetrance of these variants.

PRNP was conclusively established as a dominant disease gene due to clear Mendelian 

segregation of a few variants with disease (16–18). Yet ascertainment bias (19), low rates of 

predictive genetic testing (20), and frequent lack of family history (21, 22) confound 

attempts to estimate penetrance by survival analysis (19, 23–26). Meanwhile, the existence 

of non-genetic etiologies leaves doubt as to whether novel variants are causal or 

coincidental.

A fully penetrant disease genotype should be no more common in the population than the 

disease that it causes. This observation allows us to leverage two large population control 

datasets to re-evaluate the penetrance of reported disease variants in PRNP. The recently 

reported Exome Aggregation Consortium (ExAC) dataset (27) contains variant calls on 

60,706 people ascertained for various common diseases, without any ascertainment on 

neurodegenerative disease. 23andMe’s database contains genotypes on 531,575 customers 

of its direct-to-consumer genotyping service who have opted in to participate in research, 

pruned to remove related individuals (first cousins or closer; Materials and Methods), 

preventing enrichment due to large families with prion disease.

RESULTS

We began by asking whether reportedly pathogenic variants are as rare as expected in these 

population control datasets. The proportion of people alive in the population today who 

harbor completely penetrant variants causal for prion disease can be approximated by the 

product of three numbers: the annual incidence of prion disease, the proportion of cases with 

such a genetic variant, and the life expectancy of individuals harboring these variants. Based 

on upper bounds of these numbers (Figure 1A), and assuming ascertainment is neutral with 

respect to neurodegenerative disease, we would expect no more than ~1.7 such individuals 

in the 60,706 exomes in the ExAC dataset (27), and ~15 such individuals among the 

~530,000 genotyped 23andMe customers who opted to participate in research.
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Through reviews (28–30) and PubMed searches, we identified 63 rare genetic variants 

reported to cause prion disease (Table S2). We reviewed ExAC read-level evidence for 

every rare (<0.1% allele frequency) variant call in PRNP (Materials and Methods; Table S3–

4) and found that 52 individuals in ExAC harbor reportedly pathogenic missense variants 

(Figure 1B), at least a 30-fold excess over expectation if all such variants were fully 

penetrant. Similarly, in the 23andMe database we observed a total of 141 alleles of 16 

reportedly pathogenic variants genotyped on their platform (Table S5).

Individuals with reportedly pathogenic PRNP variants did not cluster within any one cohort 

within ExAC (Table S6), arguing against enrichment due to comorbidity with a common 

disease ascertained for exome sequencing. ExAC does include populations, such as South 

Asians, in which prion disease is not closely surveilled and we cannot rule out a higher 

incidence than that reported in developed countries, yet the individuals with reportedly 

pathogenic variants in either ExAC or 23andMe were of diverse inferred ancestry (Table 

S7–9). These individuals’ ages were consistent with the overall ExAC age distribution 

(Figure S1), rather than being enriched below some age of disease onset. ExAC genotypes at 

the prion disease modifier polymorphism M129V (34) were consistent with population allele 

frequencies (Table S7), rather than enriched for the lower-risk heterozygous genotype. 

Certain PRNP variants are associated with highly atypical phenotypes (35, 36), which are 

mistakable for other dementias and may not be well ascertained by current surveillance 

efforts. Most of the variants found in our population control cohorts, however, have been 

reported in individuals with a classic, sporadic Creutzfeldt-Jakob disease phenotype (22, 28, 

30, 37–39), arguing that the discrepancy between observed and expected allele counts does 

not result primarily from an underappreciated prevalence of atypical prion disease.

Having observed a large excess of reportedly pathogenic variants over expectation in two 

datasets, and having excluded the most obvious confounders, we hypothesized that the 

unexpectedly high frequency of these variants in controls might arise from benign and/or 

low-risk variants.

We investigated which variants were responsible for the observed excess (Figure 2). 

Variants with the strongest prior evidence of pathogenicity are absent from ExAC and 

cumulatively account for ≤5 alleles in 23andMe, consistent with the known rarity of genetic 

prion disease. Much of the excess allele frequency in population controls is due, instead, to 

variants with very weak prior evidence of pathogenicity (Figure 2 and Supplementary 

Discussion). For four variants observed in controls (V180I, R208H, V210I, and M232R), 

pathogenicity is controversial (40, 41) or reduced penetrance has been suggested (42, 43), 

but quantitative estimates of penetrance have never been produced, and the variants remain 

categorized as causes of genetic Creutzfeldt-Jakob disease (21, 22). Although we cannot 

prove that any one of the variants we observe in population controls is completely neutral, 

the list of reported pathogenic variants likely includes false positives. Indeed, the 

observation that 0.4% (236 / 60,706) of ExAC individuals harbor a rare (<0.1%) missense 

variant (Table S4) suggests that ~4 of every 1000 sporadic prion disease cases will, by 

chance, harbor such a variant, which in many cases will be interpreted and reported as causal 

given the long-standing classification of PRNP as a Mendelian disease gene.
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At least three variants, however (V180I, V210I, and M232R) fail to cluster with either the 

likely benign or likely Mendelian variants (Figure 2). Because each of these three appears 

primarily in one population in both cases and controls (Tables S1, S5, S7), we compared 

allele frequencies in matched population groups. Each has an allele frequency in controls 

that is too high for a fully penetrant, dominant prion disease-causing variant, and yet far 

lower than the corresponding allele frequency in cases (Figure 3).

Because we lack genome-wide SNP data on cases we are unable to directly correct for 

population stratification, which thus may contribute to the observed differences in allele 

frequencies. Geographic clusters of genetic prion disease have been recognized for decades 

(26, 31, 58). For example, nearly half of Italian prion disease cases with the V210I variant 

are concentrated within two regions of Italy (59), so any non-uniform geographic sampling 

in cases versus controls would add some uncertainty to our penetrance estimates.

Nonetheless, the magnitude of the enrichment of certain variants in cases over controls in 

our datasets makes substructure an implausible explanation for the entire difference. In order 

for V210I to be neutral and yet appear with an allele frequency of 8.1% in Italian cases 

despite an apparent allele frequency of 0.02% in Italian controls, it would need to be fixed in 

a subpopulation comprising 8% of Italy’s populace. Under this scenario, this subpopulation 

would need to be virtually unsampled in any of our control cohorts, and V210I cases would 

contain many homozygotes. In reality, no cases have been reported homozygous for this 

variant. Conversely, if V210I were fully penetrant, family history would be positive in most 

cases, and the variant’s appearance on 13 alleles in 23andMe (Table S5) would indicate that 

this variant alone accounts for three times the known prevalence of genetic prion disease 

(Figure 1A). Finally, if the low family history rate were due to many de novo mutations, 

then V210I cases would be more uniformly distributed across populations (Table S1). 

Similar arguments rule out V180I being either benign or Mendelian. M232R, though clearly 

not Mendelian, could still be benign as it exhibits only 4- to 6-fold enrichment in cases, an 

amount that might conceivably be explained by Japanese population substructure alone. 

However, because even common variants in PRNP affect prion disease risk with odds ratios 

of 3 or greater (60–62), it is not implausible that M232R has a similar effect size, and our 

data suggest this a more likely scenario than it being neutral.

Satisfied that these three variants are likely neither benign nor Mendelian, we estimated 

lifetime risk in heterozygotes (Materials and Methods). The ~2 in 1 million annual incidence 

of prion disease translates into a baseline lifetime risk of ~1 in 5,000 in the general 

population (Materials and Methods). Because prion diseases are so rare, even the massive 

enrichment of heterozygotes in cases (Figure 3), implying odds ratios on the order of 10 to 

1,000, corresponds to only low penetrance, with lifetime risk for M232R, V180I and V210I 

estimated near 0.1%, 1%, and 10%, respectively. Although our estimates are imperfect due 

to population stratification, they accord well with family history rates (Figure 3) and explain 

the unique space that these variants occupy in the plot of case versus control allele count 

(Figure 2). These data indicate that PRNP missense variants occupy a risk continuum rather 

than a dichotomy of causal versus benign.
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We asked whether the same was true of protein-truncating variants. PRNP possesses only 

one protein-coding exon, so premature stop codons are expected to result in truncated 

polypeptides rather than in nonsense-mediated decay. Prion diseases are known to arise from 

a gain of function, as neurodegeneration is not seen in mice, cows, or goats lacking PrP (63–

66), and the rate of prion disease progression is tightly correlated with PrP expression level 

(67). Yet heterozygous C-terminal (residue ≥145) truncating variants are known to cause 

prion disease, sometimes with peripheral amyloidosis (35). Some of these patients also 

experience sensorimotor neuropathy phenotypically similar to that present in homozygous, 

but not heterozygous, PrP knockout mice (68), but attributed to amyloid infiltration of 

peripheral nerves, rather than loss of PrP function (35).

We identified, for the first time, heterozygous N-terminal (residue ≤131) truncating variants 

in four ExAC individuals and were able to obtain Sanger validation (Figure S1) and limited 

phenotype data (Table S11) for three. These individuals are free of overt neurological 

disease at ages 79, 73, and 52, and report no personal or family history of neurodegeneration 

nor of peripheral neuropathy. Therefore, the pathogenicity of protein-truncating variants 

appears to be dictated by position within PrP’s amino acid sequence (Figure 4). Observing 

three PRNP nonsense variants in ExAC is consistent with the expected number (~3.9) once 

we adjust our model (69) to exclude codons ≥145, where truncations cause a dominant gain-

of-function disease. Thus, we see no evidence that PRNP is constrained against truncation in 

its N terminus. This, combined with the lack of any obvious phenotype in individuals with 

N-terminal truncating variants, suggests that heterozygous loss of PrP function is tolerated.

DISCUSSION

Over 100,000 genetic variants have been reported to cause Mendelian disease in humans 

(73, 74). Many such reports do not meet current standards for assertions of pathogenicity 

(75, 76), and if all such reports were believed, the cumulative frequency of these variants in 

the population would imply that most people have a genetic disease (27). It is generally 

unclear how much of the excess burden of purported disease variants in the population is 

due to benign variants falsely associated, and how much is due to variants with genuine 

association but incomplete penetrance.

Here we leverage newly available large genomic reference datasets to re-evaluate reported 

disease associations in a dominant disease gene, PRNP. We identify some missense variants 

as likely benign while showing that others span a spectrum from <0.1% to ~100% 

penetrance. Our analyses provide quantitative estimates of lifetime risk for hundreds of 

asymptomatic individuals who have inherited incompletely penetrant PRNP variants.

Available datasets are only now approaching the size and quality required for such analyses, 

resulting in limitations for our study. The confidence intervals on our lifetime risk estimates 

span more than an order of magnitude, and our inability to perfectly control for population 

stratification injects additional uncertainty. We have been unable to reclassify those PRNP 

variants that are very rare both in cases and in controls (Supplementary Discussion). We 

have avoided analysis of large insertions that are poorly called with short sequencing reads, 

though we note that existing literature on these insertions is consistent with a spectrum of 
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penetrance similar to that which we observe for missense variants (28, 77). Penetrance 

estimation in Mendelian disease will be improved by the collection of larger case series, 

particularly with genome-wide SNP data to allow more accurate population matching. This, 

coupled with continued large-scale population control sequencing and genotyping efforts, 

should reveal whether the dramatic variation in penetrance that we observe here is a more 

general feature of dominant disease genes.

Because PrP is required for prion pathogenesis and reduction in gene dosage slows disease 

progression (67, 78–80), several groups have sought to therapeutically reduce PrP 

expression using RNA interference (81–83), antisense oligonucleotides (84), or small 

molecules (85, 86). Our discovery of heterozygous loss-of-function variants in three healthy 

older humans provides the first human genetic data regarding the effects of a 50% reduction 

in gene dosage for PRNP. Both the number of individuals and the depth of available 

phenotype data are limited, and lifelong heterozygous inactivation of a gene is an imperfect 

model of the effects of pharmacological depletion of the gene product. With those 

limitations, our data provide preliminary evidence that a reduction in PRNP dosage, if 

achievable in patients, is likely to be tolerated. Increasingly large control sequencing 

datasets will soon enable testing whether the same is true of other genes currently being 

targeted in substrate reduction therapeutic approaches for other protein-folding disorders.

Together, our findings highlight the value of large reference datasets of human genetic 

variation for informing both genetic counseling and therapeutic strategy.

MATERIALS AND METHODS

Prion disease case series

Prion disease is considered a notifiable diagnosis in most developed countries, with 

mandatory reporting of all suspect cases to a centralized surveillance center. Surveillance 

was carried out broadly according to established guidelines (87, 88), with specifics as 

described previously for Australia (89), France (90), Germany (91–93), Italy (94), Japan 

(22), and the Netherlands (95). Sanger sequencing of the PRNP open reading frame was 

performed as described (96). We included only prion disease cases classified as definite 

(autopsy-confirmed) or probable according to published guidelines (88). Criteria for genetic 

testing vary between countries and over the years of data collection, with testing offered 

only on indication of family history in some times and places, and testing of all suspect 

cases with tissue available in other instances. Summary statistics on the total number and 

proportion of cases sequenced are presented in Table S1.

Exome sequencing and analysis

The ascertainment, sequencing, and joint calling of the ExAC dataset have been described 

previously (97). We extracted all rare (<0.1%) coding variant calls in PRNP with genotype 

quality (GQ) ≥10, alternate allele depth (AD) ≥3 and alternate allele balance (AB) ≥20%. 

Read-level evidence was visualized using Integrative Genomics Viewer (IGV) (98) for 

manual review. Because most ExAC exomes were sequenced with 76bp reads and the PRNP 

octapeptide repeat region (codons 50–90 inclusive) is 123bp long, it was impossible to 
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determine whether genotype calls in this region were correct, and they were not considered 

further. After review of IGV screenshots, 87% of genotype calls were judged to be correct 

and were included in Table S3. Of the genotype calls judged to be correct, 99% had 

genotype quality (GQ) ≥95, 99% had allelic balance (AB) between 30% and 70%, and 97% 

had ≥10 reads supporting the alternate allele. All participants provided informed consent for 

exome sequencing and analysis. The Exome Aggregation Consortium’s aggregation and 

release of exome data have been approved by the Partners Healthcare Institutional Research 

Board (2013P001339). ExAC data have been publicly released at http://

exac.broadinstitute.org/ and IGV screenshots of the rare PRNP variants deemed to be 

genuine and included in this study are available at https://github.com/ericminikel/

prnp_penetrance/tree/master/supplement/igv

23andMe research participants and genotyping

Participants were drawn from the customer base of 23andMe, Inc., a personal genetics 

company (accessed February 6, 2015). All participants provided informed consent under a 

protocol approved by an external AAHRPP-accredited IRB, Ethical & Independent Review 

Services (E&I Review). DNA extraction and genotyping were performed on saliva samples 

by National Genetics Institute (NGI), a CLIA-licensed clinical laboratory and a subsidiary of 

Laboratory Corporation of America. Samples were genotyped on one of four Illumina 

platforms (V1-V4) as described previously (99). Of the PRNP SNPs considered, two (P105L 

and E200K) were genotyped on all four platforms while the other 14 were genotyped only 

on V3 and V4, resulting in differing numbers of total samples genotyped (Table S5). 

Genotypes were called with Illumina GenomeStudio. A 98.5% call rate were required for all 

samples. As with all 23andMe research participants, individuals whose genotyping analyses 

failed to reach the desired call rate repeatedly were recontacted to provide additional 

samples. A maximal set of unrelated individuals was chosen based on segmental identity-by-

descent (IBD) estimation(100). Individuals were defined as related if they shared more than 

700 cM IBD (approximately the minimal expected sharing between first cousins). Allele 

counts between 1 and 5 were rounded up to 5 to protect individual privacy (Table S5). 

Rounding down to 1 instead would raise our estimates of penetrance for V180I to 7.7% 

(95%CI, 1.2% – 50%) and for P102L, A117V, D178N and E200K collectively to 100% 

(95%CI, 100% – 100%), but the confidence intervals would still overlap those based on 

ExAC allele frequencies, and the overall conclusions of our study would remain unchanged.

23andMe ancestry composition

Ancestral origins of chromosomal segments were assigned on a continental level (European, 

Latino, African, and East Asian) and a country level (Japanese) as described by Durand et al 

(101). Briefly, after phasing genotypes using an out-of-sample implementation of the Beagle 

algorithm (102), a string kernel support vector machine classifier assigns tentative ancestry 

labels to local genomic regions. Then an autoregressive pair hidden Markov model was used 

to simultaneously correct phasing errors and produce reconciled local ancestry estimates and 

confidence scores based on the initial assignment. Finally, isotonic regression models were 

used to recalibrate the confidence estimates.
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Europeans and East Asians were defined as individuals with more than 97% of 

chromosomal segments predicted as being from the respective ancestries. Because African 

Americans and Latinos are highly admixed, no single threshold of genome-wide ancestry is 

sufficient to distinguish them. However, segment length distributions of European, African, 

and Native American ancestries are different between African Americans and Latinos, due 

to distinct admixture timing in the two ethnic groups. Thus, a logistic classifier based on 

segment length of European, African, and Native American ancestries was used to 

distinguish between African Americans and Latinos.

At the country level, individuals were classified as Japanese based on the fraction of the 

respective local ancestry using a threshold of 90% for classifying Japanese ancestry. This 

threshold is based on the average fraction of local ancestry in the reference population 

(23andMe research participants with all four grandparents from the reference country): 94% 

(5% SD, N=533) for Japanese. Using the same approach, we were unable to obtain a 

confident set of Italian individuals for analysis of V210I due to extensive admixture. 

23andMe research participants with all four grandparents from Italy only have 66% (18% 

SD, N=2090) Italian ancestry, and only ~60 participants have >90% Italian ancestry.

ExAC ancestry inference

We computed ten principal components based on ~5,800 common SNPs as described (27, 

103). A centroid in eigenvalue-weighted principal component space was generated for each 

HapMap population based on 1000 Genomes individuals in ExAC. The remaining 

individuals in ExAC were assigned to the HapMap population with the nearest centroid 

according to eigenvalue-weighted Euclidean distance. Ancestries of all individuals, 

including those with reportedly pathogenic variants, are summarized in (Tables S7, S8).

Prion disease incidence and baseline risk

The reported incidence of prion disease varies between countries and between years, with 

much of the variability explained by the intensity of surveillance, as measured by the 

number of cases referred to national surveillance centers (13). Rates of ~1 case per million 

population per year have been reported, for instance in the U.S. (104) and in Japan (22), 

however, the countries with the most intense surveillance (greatest number of referrals per 

capita), such as France and Austria, observe incidence figures as high as 2 cases per million 

population per year (13). Only in small countries where the statistics are dominated by a 

particular genetic prion disease founder mutation, such as Israel and Slovakia (23, 26), has 

an incidence higher than 2 per million been consistently observed (105). We therefore 

accepted 2 cases per million as an upper bound for the true incidence of prion disease. 

Assuming an all-causes death rate of ~10 per 1,000 annually (106), this incidence 

corresponds to prion disease accounting for ~0.02% of all deaths, which we accepted as the 

baseline disease risk in the general population.

Lifetime risk estimation

By Bayes' theorem, the probability of disease given a genotype (penetrance or lifetime risk, 

P(D|G)) is equal to the proportion of individuals with the disease who have the genotype 

(genotype frequency in cases, P(G|D)) times the prevalence of the disease (baseline lifetime 
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risk in the general population, P(D)), divided by the frequency of the genotype in the general 

population (here, population control allele frequency, P(G)). The use of this formula to 

estimate disease risk dates back at least to Cornfield's estimation of the probability of lung 

cancer in smokers (107), with later contributions by Woolf (108) and a synthesis by C.C. Li 

with application to genetics (109).

We used an allelic rather than genotypic model, such that lifetime risk in an individual with 

one allele is equal to case allele frequency (based on the number of prion disease cases that 

underwent PRNP sequencing) times baseline risk divided by population control allele 

frequency, P(D|A) = P(A|D)×P(D)/P(A). Note that we assume that our population control 

datasets include individuals who will later die of prion disease, thus enabling direct use of 

the ExAC and 23andMe allele frequencies as the denominator P(A). Following Kirov (11), 

we compute Wilson 95% confidence intervals on the binomial proportions P(A|D) and P(A), 

and calculate the upper bound of the 95% confidence interval for penetrance using the upper 

bound on case allele frequency and the lower bound on population control allele frequency, 

and vice versa for the lower bound on penetrance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Reportedly pathogenic PRNP variants are >30 times more common in controls than 
expected based on disease incidence
Reported prion disease incidence varies with the intensity of surveillance efforts (13), with 

an apparent upper bound of ~2 cases per million population per year (Materials and 

Methods). In our surveillance cohorts, 65% of cases underwent PRNP open reading frame 

sequencing, with 12% of all cases, or 18% of sequenced cases, possessing a rare variant 

(Table S1), consistent with an oft-cited estimate that 15% of cases of Creutzfeldt-Jakob 

disease are familial (31). Genetic prion diseases typically strike in midlife, with mean age of 

onset for different variants ranging from 28 to 77 (22, 32) (Table S10); we accepted 80, a 

typical human life expectancy, as an upper bound for mean age of onset, and to be 

additionally conservative, we assumed that all individuals in ExAC and 23andMe were 

below any age of onset, even though both contain elderly individuals (33) (Figure S1). Thus, 

no more than ~29 people per million in the general population should harbor high-

penetrance prion disease-causing variants. Therefore at most ~1.7 people in ExAC (A) and 

~15 people in 23andMe would be expected to harbor such variants. In fact, reportedly 

pathogenic variants are seen in 52 ExAC individuals (B) and on 141 alleles in the 23andMe 

database.
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Figure 2. Reportedly pathogenic PRNP variants include Mendelian, benign, and intermediate 
variants
Prior evidence of pathogenicity is extremely strong for four missense variants - P102L, 

A117V, D178N and E200K - each of which has been observed to segregate with disease in 

multiple multigenerational families (16–18, 44–48) and to cause spontaneous disease in 

mouse models (49–54). These account for >50% of genetic prion disease cases (Table S1), 

yet are absent from ExAC (Table S3), and collectively appear on ≤5 alleles in 23andMe’s 

cohort (Table S5), indicating allele frequencies sufficiently low to be consistent with the 

prevalence of genetic prion disease (Figure 1). Conversely, the variants most common in 

controls and rare in cases had categorically weak prior evidence for pathogenicity. R208C (8 

alleles in 23andMe) and P39L were observed in patients presenting clinically with other 

dementias, with prion disease suggested as an alternative diagnosis solely on the basis of 

finding a novel PRNP variant (55, 56). E196A was originally reported in a single patient, 

with a sporadic Creutzfeldt-Jakob disease phenotype and no family history (37), and 

appeared in only 2 of 790 Chinese prion disease patients in a recent case series (57), 

consistent with the ~0.1% allele frequency among Chinese individuals in ExAC (Tables S5 

and S8). At least three variants (M232R, V180I, and V210I) occupy a space inconsistent 

with either neutrality or with complete penetrance (see main text and Figure 3). R148H, 

T188R, V203I, R208H and additional variants are discussed in Supplementary Discussion.
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Figure 3. Certain variants confer intermediate amounts of lifetime risk
M232R, V180I, and V210I show varying degrees of enrichment in cases over controls, 

indicating a weak to moderate increase in risk. Best estimates of lifetime risk in 

heterozygotes (Materials and Methods) range from ~0.08% for M232R to ~7.8% for V210I, 

and correlate with the proportion of patients with a positive family history. Allele 

frequencies for P102L, A117V, D178N and E200K are consistent with up to 100% 

penetrance, with confidence intervals including all reported estimates of E200K penetrance 

based on survival analysis, which range from ~60% to ~90% (19, 23–26). Rates of family 

history of neurodegenerative disease in Japanese cases are from (Table S10) and in 

European populations are from Kovacs et al (21), with Wilson binomial 95% confidence 

intervals shown. *Based on allele counts rounded for privacy (Materials and Methods). 

†GSS, Gerstmann Straussler Scheinker disease associated with variants P102L, A117V and 

G131V. ‡FFI: fatal familial insomnia associated with a D178N cis 129M haplotype.
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Figure 4. Effects of truncating variants in the human prion protein are position-dependent
Truncating variants reported in prion disease cases in the literature (Table S2) and in our 

cohorts (Table S1) cluster exclusively in the C-terminal region (residue ≥145), while 

truncating variants in ExAC are more N-terminal (residue ≤131). The ortholog of each 

residue from 23–94 is deleted in at least one prion-susceptible transgenic mouse line (70). C-

terminal truncations abolish PrP’s glycosylphosphatidylinositol anchor but leave most of the 

protein intact, a combination that mediates gain of function through mislocalization, causing 

this normally cell-surface-anchored protein to be secreted. Consistent with this model of 

pathogenicity, mice expressing full-length secreted PrP develop fatal and transmissible prion 

disease (71, 72). By contrast, the N-terminal truncating variants that we observe retain only 

residues dispensable for prion propagation, and are likely to cause a total loss of protein 

function.
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