406 research outputs found

    Incorporating chemical signalling factors into cell-based models of growing epithelial tissues

    Get PDF
    In this paper we present a comprehensive computational framework within which the effects of chemical signalling factors on growing epithelial tissues can be studied. The method incorporates a vertex-based cell model, in conjunction with a solver for the governing chemical equations. The vertex model provides a natural mesh for the finite element method (FEM), with node movements determined by force laws. The arbitrary Lagrangian–Eulerian formulation is adopted to account for domain movement between iterations. The effects of cell proliferation and junctional rearrangements on the mesh are also examined. By implementing refinements of the mesh we show that the finite element (FE) approximation converges towards an accurate numerical solution. The potential utility of the system is demonstrated in the context of Decapentaplegic (Dpp), a morphogen which plays a crucial role in development of the Drosophila imaginal wing disc. Despite the presence of a Dpp gradient, growth is uniform across the wing disc. We make the growth rate of cells dependent on Dpp concentration and show that the number of proliferation events increases in regions of high concentration. This allows hypotheses regarding mechanisms of growth control to be rigorously tested. The method we describe may be adapted to a range of potential application areas, and to other cell-based models with designated node movements, to accurately probe the role of morphogens in epithelial tissues

    Galectin-3 shapes toxic alpha-synuclein strains in Parkinson's disease.

    Get PDF
    Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD

    Human Mas-related G protein-coupled receptors-X1 induce chemokine receptor 2 expression in rat dorsal root ganglia neurons and release of chemokine ligand 2 from the human LAD-2 mast cell line

    Get PDF
    Primate-specific Mas-related G protein-coupled receptors-X1 (MRGPR-X1) are highly enriched in dorsal root ganglia (DRG) neurons and induce acute pain. Herein, we analyzed effects of MRGPR-X1 on serum response factors (SRF) or nuclear factors of activated T cells (NFAT), which control expression of various markers of chronic pain. Using HEK293, DRG neuron-derived F11 cells and cultured rat DRG neurons recombinantly expressing human MRGPR-X1, we found activation of a SRF reporter gene construct and induction of the early growth response protein-1 via extracellular signal-regulated kinases-1/2 known to play a significant role in the development of inflammatory pain. Furthermore, we observed MRGPR-X1-induced up-regulation of the chemokine receptor 2 (CCR2) via NFAT, which is considered as a key event in the onset of neuropathic pain and, so far, has not yet been described for any endogenous neuropeptide. Up-regulation of CCR2 is often associated with increased release of its endogenous agonist chemokine ligand 2 (CCL2). We also found MRGPR-X1-promoted release of CCL2 in a human connective tissue mast cell line endogenously expressing MRGPR-X1. Thus, we provide first evidence to suggest that MRGPR-X1 induce expression of chronic pain markers in DRG neurons and propose a so far unidentified signaling circuit that enhances chemokine signaling by acting on two distinct yet functionally co-operating cell types. Given the important role of chemokine signaling in pain chronification, we propose that interruption of this signaling circuit might be a promising new strategy to alleviate chemokine-promoted pain

    Impact of an endurance training program on exercise-induced cardiac biomarker release

    Get PDF
    We evaluated the influence of a 14-wk endurance running program on the exercise-induced release of high-sensitivity cardiac troponin T (hs-cTnT) and NH2-terminal pro-brain natriuretic peptide (NT-proBNP). Fifty-eight untrained participants were randomized to supervised endurance exercise (14 wk, 3–4 days/wk, 120–240 min/wk, 65–85% of maximum heart rate) or a control group. At baseline and after the training program, hs-cTnT and NT-proBNP were assessed before and 5 min, 1 h, 3 h, 6 h, 12 h, and 24 h after a 60-min maximal running test. Before training, hs-cTnT was significantly elevated in both groups with acute exercise (P < 0.0001) with no between-group differences. There was considerable heterogeneity in peak hs-cTnT concentration with the upper reference limit exceeded in 71% of the exercise tests. After training, both baseline and postexercise hs-cTnT were significantly higher compared with pretraining and the response of the control group (P = 0.008). Acute exercise led to a small but significant increase in NT-proBNP, but this was not mediated by training (P = 0.121). In summary, a controlled endurance training intervention resulted in higher pre- and postexercise values of hs-cTnT with no changes in NT-proBNP

    Evaluation of the efficacy and safety of text messages targeting adherence to cardiovascular medications in secondary prevention: the txt2heart Colombia randomised controlled trial (Preprint)

    Get PDF
    Background: Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality in the world. Prevalence is estimated at around 100 million patients worldwide. There is evidence that antiplatelet agents and antihypertensive medication reduce the risk of new vascular events in this population, but treatment adherence is very low. Objective: We developed an intervention based on behavioral modification techniques delivered via mobile short message services (SMS) to increase the adherence to pharmacologic treatment on patients with prior history of ASCVD. Methods: We conducted a randomized controlled clinical trial for patients with a prior diagnosis of cardiovascular event such as acute myocardial infarction, unstable angina, cerebrovascular disease or peripheral artery disease in one centre in Colombia. Patients randomized to the intervention arm were assigned to receive SMS daily for the first 4 weeks, five SMS on week 5: three SMS per week from week 6, and one SMS from 8th week until 52nd week. Patients in the control arm received a monthly SMS reminding them of the next study appointment, requesting information about changes in phone number, thanking them for participating in the study and reminding them of the importance of the study. Primary endpoint was change in Low Density Lipoprotein-Cholesterol (LDL-C) and the secondary endpoints were change in thromboxane B2 levels, heart rate, systolic and diastolic blood pressure. Medication adherence was measured with the Medication Adherence Report Scale (MARS 5), mortality and new cardiac hospitalization were assessed at one year end point. A logistic regression analysis and bivariate testing was performed. Results: Nine hundred and thirty patients were randomized, 805 (87%) completed follow up, and were analyzed for the primary endpoint. There was no difference between arms in change of LDL-C at 12 months (P=.41). or for any of the secondary outcomes. No adverse events were reported. Conclusions: In our study we did not find evidence that a behavior modification intervention delivered by SMS improved LDL-C, blood pressure levels or adherence at 12 months. More research is needed to evaluate whether different SMS strategies including personalized messages and with different timing are effective; future studies should include mixed methods to understand better why, for whom and in which context (e.g. health system, social environment) SMS interventions work (or not) to improve adherence in patients with ASCVD. Clinical Trial: Clinicaltrial.gov NCT03098186. Date of registration: March 31st 201

    Analysis of Synaptic Proteins in the Cerebrospinal Fluid as a New Tool in the Study of Inborn Errors of Neurotransmission

    Get PDF
    Abstract In a few rare diseases, specialised studies in cerebrospinal fluid (CSF) are required to identify the underlying metabolic disorder. We aimed to explore the possibility of detecting key synaptic proteins in the CSF, in particular dopaminergic and gabaergic, as new procedures that could be useful for both pathophysiological and diagnostic purposes in investigation of inherited disorders of neurotransmission. Dopamine receptor type 2 (D2R), dopamine transporter (DAT) and vesicular monoamine transporter type 2 (VMAT2) were analysed in CSF samplesfrom 30 healthy controls (11 days to 17 years) by western blot analysis. Because VMAT2 was the only protein with intracellular localisation, and in order to compare results, GABA vesicular transporter, which is another intracellular protein, was also studied. Spearman’s correlation and Student’s t tests were applied to compare optical density signals between different proteins. All these synaptic proteins could be easily detected and quantified in the CSF. DAT, D2R and GABA VT expression decrease with age, particularly in the first months of life, reflecting the expected intense synaptic activity and neuronal circuitry formation. A statistically significant relationship was found between D2R and DAT expression, reinforcing the previous evidence of DAT regulation by D2R. To our knowledge, there are no previous studies on human CSF reporting a reliable analysis of these proteins. These kinds of studies could help elucidate new causes of disturbed dopaminergic and gabaergic transmission as well as understanding different responses to L-dopa in inherited disorders affecting dopamine metabolism. Moreover, this approach to synaptic activity in vivo can be extended to different groups of proteins and diseases

    Erasing Sensorimotor Memories via PKMζ Inhibition

    Get PDF
    Sensorimotor cortex has a role in procedural learning. Previous studies suggested that this learning is subserved by long-term potentiation (LTP), which is in turn maintained by the persistently active kinase, protein kinase Mzeta (PKMζ). Whereas the role of PKMζ in animal models of declarative knowledge is established, its effect on procedural knowledge is not well understood. Here we show that PKMζ inhibition, via injection of zeta inhibitory peptide (ZIP) into the rat sensorimotor cortex, disrupts sensorimotor memories for a skilled reaching task even after several weeks of training. The rate of relearning the task after the memory disruption by ZIP was indistinguishable from the rate of initial learning, suggesting no significant savings after the memory loss. These results indicate a shared molecular mechanism of storage for declarative and procedural forms of memory

    Quality changes and shelf-life prediction of a fresh fruit and vegetables purple smoothie

    Get PDF
    The sensory, microbial and bioactive quality changes of untreated (CTRL) and mild heat−treated (HT; 90 ÂșC/45 s) smoothies were studied and modelled throughout storage (5, 15 and 25 ÂșC). The overall acceptability was better preserved in HT samples being highly correlated (hierarchical clustering) with the flavour. The sensory quality data estimated smoothie shelf−life (CTRL/HT) of 18/55 (at 5 ÂșC), 4.5/12 (at 15 ÂșC), 2.4/5.8 (at 25 ÂșC) days. The yeast and moulds growth rate was lower in HT compared to CTRL while a lag phase for mesophiles/psychrophiles was observed in HT−5/15 ÂșC. HT and 5 ÂșC−storage stabilized the phenolics content. FRAP reported the best correlation (R2=0.94) with the studied bioactive compounds, followed by ABTS (R2=0.81) while DPPH was the total antioxidant capacity method with the lowest adjustment (R2=0.49). Conclusively, modelling was used to estimate the shelf−life of a smoothie based on quality retention after a short time−high temperature heat treatment that better preserved microbial and nutritional quality during storage.The financial support of this research was provided by the Ministerio Español de EconomĂ­a y Competitividad MINECO (Projects AGL2013−48830−C2−1−R and AGL2013−48993−C2−1−R) and by FEDER funds. G.A. GonzĂĄlez−Tejedor thanks to PanamĂĄ Government for the scholarship to carry out his PhD Thesis. A. Garre (BES−2014−070946) is grateful to the MINECO for awarding him a pre−doctoral grant. We are also grateful to E. Esposito and N. Castillejo for their skilful technical assistance

    TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss

    Get PDF
    Microglia coordinate various functions in the central nervous system ranging from removing synaptic connections, to maintaining brain homeostasis by monitoring neuronal function, and clearing protein aggregates across the lifespan. Here we investigated whether increased microglial phagocytic activity that clears amyloid can also cause pathological synapse loss. We identified TDP-43, a DNA-RNA binding protein encoded by the Tardbp gene, as a strong regulator of microglial phagocytosis. Mice lacking TDP-43 in microglia exhibit reduced amyloid load in a model of Alzheimer's disease (AD) but at the same time display drastic synapse loss, even in the absence of amyloid. Clinical examination from TDP-43 pathology cases reveal a considerably reduced prevalence of AD and decreased amyloid pathology compared to age-matched healthy controls, confirming our experimental results. Overall, our data suggest that dysfunctional microglia might play a causative role in the pathogenesis of neurodegenerative disorders, critically modulating the early stages of cognitive decline
    • 

    corecore