41 research outputs found

    Modelling and finite time stability analysis of psoriasis pathogenesis

    Get PDF
    A new systems model of psoriasis is presented and analysed from the perspective of control theory. Cytokines are treated as actuators to the plant model that govern the cell population under the reasonable assumption that cytokine dynamics are faster than the cell population dynamics. The analysis of various equilibria is undertaken based on singular perturbation theory. Finite time stability and stabilisation has been studied in various engineering applications where the principal paradigm uses non-Lipschitz functions of the states. A comprehensive study of the finite time stability properties of the proposed psoriasis dynamics is carried out. It is demonstrated that the dynamics are finite time convergent to certain equilibrium points rather than asymptotically or exponentially convergent. This feature of finite time convergence motivates the development of a modi?ed version of the Michaelis-Menten function, frequently used in biology. This framework is used to model cytokines as fast finite time actuators

    Phosphorothioate antisense oligonucleotides induce the formation of nuclear bodies

    Get PDF
    Antisense oligonucleotides are powerful tools for the in vivo regulation of gene expression. We have characterized the intracellular distribution of fluorescently tagged phosphorothioate oligodeoxynucleotides (PS-ONs) at high resolution under conditions in which PS-ONs have the potential to display antisense activity. Under these conditions PS-ONs predominantly localized to the cell nucleus where they accumulated in 20-30 bright spherical foci designated phosphorothioate bodies (PS bodies), which were set against a diffuse nucleoplasmic population excluding nucleoli. PS bodies are nuclear structures that formed in cells after PS-ON delivery by transfection agents or microinjection but were observed irrespectively of antisense activity or sequence. Ultrastructurally, PS bodies corresponded to electron-dense structures of 150-300 nm diameter and resembled nuclear bodies that were found with lower frequency in cells lacking PS-ONs. The environment of a living cell was required for the de novo formation of PS bodies, which occurred within minutes after the introduction of PS-ONs. PS bodies were stable entities that underwent noticeable reorganization only during mitosis. Upon exit from mitosis, PS bodies were assembled de novo from diffuse PS-ON pools in the daughter nuclei. In situ fractionation demonstrated an association of PS-ONs with the nuclear matrix. Taken together, our data provide evidence for the formation of a nuclear body in cells after introduction of phosphorothioate oligodeoxynucleotides

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    Immunogenetic Therapy of Human Melanoma Utilizing Autologous Tumor Cells Transduced to Secrete Granulocyte-Macrophage Colony-Stimulating Factor

    Full text link
    We performed a clinical study of five patients with melanoma to evaluate the immunobiological effects of retrovirally transduced autologous tumor cells given as a vaccine to prime draining lymph nodes. Patients were inoculated with both wild-type (WT) and GM-CSF gene-transduced tumor cells in different extremities. Approximately 7 days later, vaccine-primed lymph nodes (VPLNs) were removed. There was an increased infiltration of dendritic cells (DCs) in the GM-CSF-secreting vaccine sites compared with the WT vaccine sites. This resulted in a greater number of cells harvested from the GM-CSF-VPLNs compared with the WT-VPLNs at a time when serum levels of GM-CSF were not detectable. Four of five patients proceeded to have the adoptive transfer of GM-CSF-VPLN cells secondarily activated and expanded ex vivo with anti-CD3 MAb and IL2. One patient had a durable complete remission of metastatic tumor. Utilizing cytokine (IFN-gamma, GM-CSF, IL-10) release assays, GM-CSF-VPLN T cells manifested diverse responses when exposed to tumor antigen in vitro. In two of two patients, GM-CSF-VPLN T cell responses were different from those of matched WTVPLN cells. This study documents measurable immunobiologic differences of GM-CSF-transduced tumor cells given as a vaccine compared with WT tumor cells. The complete tumor remission in one patient provides a rationale to pursue this approach further.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63414/1/10430340050015455.pd

    The pathogenic role of tissue-resident immune cells in psoriasis.

    No full text
    Psoriasis is a common chronic inflammatory skin disease, the study of which might also be of considerable value to the understanding of other inflammatory and autoimmune-type diseases, such as rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis and diabetes mellitus. There is clear evidence that T cells and dendritic cells have a central role in psoriasis. Based on recent data from humans and animal models, we propose that a psoriasis lesion can be triggered and sustained by the local network of skin-resident immune cells. This concept focuses attention on local, rather than systemic, components of the immune system for rationalized therapeutic approaches of psoriasis and possibly also other chronic inflammatory diseases
    corecore