6 research outputs found

    Preparation of single cell detritus from Laminaria sacchat¡rina as a hatchery diet for bivlabe mollucs.

    Get PDF
    A high-yield technique is described for the elaboration of single cell detritus (SCD) from Laminaria saccharina, based on the sequential action of C1H, enzymes (endoglucanases and cellulases) and 2 bacteria showing a high degree of cellobiotic, proteolytic, and alginolytic activity (CECT 5255 and CECT 5256). Over 85% of dried particles of L. saccharina were transformed into a suspension of free cell and bacterial and detrital particles after 24 hours of bacterial activity with this technique. These particles were less than 20 μm in diameter, constituting a suitable diet for bivalve mollusks. After 72 hours 99% of the total particulate volume consisted of particles less than 20 μm in diameter. Tests of hatchery diets for the seed of clam Ruditapes decussatus revealed increases of 54% and 68% for live weight and length, respectively, when SCD from L. saccharina was used as the sole dietary component compared with a live phytoplankton diet. However, SCD from L. saccharina is not a suitable food for the larvae of R. decussatus.Postprint

    Interactions between Crassostrea virginica larvae and Deepwater Horizon oil: Toxic effects via dietary exposure

    No full text
    International audienceThe Deepwater Horizon (DWH) disaster released crude oil in the Gulf of Mexico for 87 days, overlapping with the reproductive season and recruitment of the oyster Crassostrea virginica. The pelagic larval life stages of C. virginica are particularly vulnerable to contaminants such as polycyclic aromatic hydrocarbons (PAHs) and oil droplets. Based on their lipophilic properties, PAHs and oil droplets can adsorb onto phytoplankton and filter-feeding C. virginica larvae may be exposed to these contaminants bound to suspended sediment, adsorbed onto algal and other particles, or in solution. This study examined the effects of exposure of C. virginica larvae to algae mixed with DWH oil. In a 14-day laboratory exposure, 5 day-old C. virginica larvae were exposed to Tisochrysis lutea mixed with four concentrations of unfiltered DWH oil (HEWAF) in a static renewal system. Larval growth, feeding capacity, abnormality and mortality were monitored throughout the exposure. Total PAH (n = 50) content of the water medium, in which larvae were grown, were quantified by GC/MS-SIM. Oil droplets were observed bound to algae, resulting in particles in the size-range of food ingested by oyster larvae (1–30 μm). After 14 days of exposure, larval growth and survival were negatively affected at concentrations of tPAH50 as low as 1.6 μg L−1. GC/MS-SIM analysis of the exposure medium confirmed that certain PAHs were also adsorbed by T. lutea and taken up by oyster larvae via ingestion of oil droplets and/or contaminated algae. Long-term exposure to chronic levels of PAH (1.6–78 μg tPAH50 L−1) was shown to negatively affect larval survival. This study demonstrates that dietary exposure of oyster larvae to DWH oil is a realistic route of crude oil toxicity and may have serious implications on the planktonic community and the food chain

    Techniques for delivery of arachidonic acid to Pacific oyster, Crassostrea gigas, spat

    No full text
    International audienceThe present study tested two techniques for dietary supplementation of Crassostrea gigas spat with PUFA, such as arachidonic acid (AA). The first technique consisted of a preliminary enrichment and growth of an algal concentrate (T-ISO, Isochrysis sp.) with AA dissolved in an ethanol solution, the whole culture then being fed to the spat. This enrichment increased the AA weight percentage in T-ISO neutral and polar lipids from 0.6 to 22.4% and from 0.4 to 6.8%, respectively. The second delivery technique was direct addition separately of free AA dissolved in ethanol solution and algal concentrate (T-ISO + AA) to the spat-rearing tank. To test the efficiency of these delivery techniques, oyster spat were supplemented with AA-enriched T-ISO, T-ISO + AA, and T-ISO alone. The possible biological impacts of these dietary treatments were assessed by measuring growth, condition index, and TAG content of oyster spat. Dry weight and condition index of spat fed AA-enriched T-ISO decreased by 24 and 49%, respectively, after 26 d of feeding; basically, TAG content declined 88% after 34 d of conditioning. When AA was added directly to seawater, spat growth and condition index were comparable with those of oysters fed T-ISO alone. AA incorporation in oyster tissues was assessed by analysis of the FA compositions in both neutral and polar lipid fractions. After 34 cl, AA content in neutral lipids reached 7 and 11.7% in the spat fed, respectively, AA-enriched T-ISO and T-ISO + AA, as compared with 1.1% in spat fed only T-ISO. AA incorporation was greater in polar lipids than in neutral lipids, reaching 7.8 and 12.5% in spat fed AA-enriched T-ISO and T-ISO + AA, respectively. A direct addition of PUFA along with the food supply represents an effective and promising means to supplement PUFA to oyster spat
    corecore