5 research outputs found

    Sedimentation and Fouling of Optical Surfaces at the ANTARES Site

    Get PDF
    ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES collaboration has performed a series of in-situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to saturate with time. The transmission loss, therefore, is expected to remain small for the several year lifetime of the ANTARES detector whose optical modules are oriented downwards. The measurements were complemented by the analysis of the ^{210}Pb activity profile in sediment cores and the study of biofouling on glass plates. Despite a significant sedimentation rate at the site, in the 0.02 - 0.05 cm.yr^{-1} range, the sediments adhere loosely to the glass surfaces and can be washed off by water currents. Further, fouling by deposits of light-absorbing particulates is only significant for surfaces facing upwards.Comment: 18 pages, 14 figures (pdf), submitted to Astroparticle Physic

    The ANTARES Optical Module

    Get PDF
    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studies and is reviewed here in detail.Comment: 26 pages, 15 figures, to be published in NI

    Study of large hemispherical photomultiplier tubes for the ANTARES neutrino telescope

    Get PDF
    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES

    The ANTARES neutrino project

    No full text

    Transmission of light in deep sea water at the site of the Antares neutrino telescope

    No full text
    corecore