139 research outputs found

    Oscillator strengths for transitions to Rydberg levels in 12C16O^{12}C^{16}O, 13C16O^{13}C^{16}O and 13C18O^{13}C^{18}O between 967 and 972 A

    Full text link
    Absorption oscillator strengths have been determined from high-resolution spectra in the 967-972 \AA region of three CO isotopomers for transitions to the Rydberg levels 4{\it pπ\pi}(0), 3{\it dπ\pi}(1) and 4{\it pσ\sigma}(0), as well as to the mixed {\it E(6)} level recently characterized by Eidelsberg et al. (2004). Synchrotron radiation from the Super-ACO electron storage ring at Orsay (LURE) was used as a light source. Oscillator strengths were extracted from the recorded spectra by least-squares fitting of the experimental profiles with synthetic spectra taking into account the homogeneous and heterogeneous interactions of the four levels. Column densities were derived from fits to the 3{\it pπ\pi}(0) absorption band whose oscillator strength is well established. These are the first reported measurements for 13^{13}C18^{18}O. For 12^{12}C16^{16}O, our results are consistent with the larger values obtained in the most recent laboratory and astronomical studies.Comment: 9 pages 7 figures 3 tables. Accepted in A&A, date of acceptance 11/05/200

    High Resolution HST-STIS Spectra of CI and CO in the Beta Pictoris Circumstellar Disk

    Full text link
    High resolution FUV echelle spectra showing absorption features arising from CI and CO gas in the Beta Pictoris circumstellar (CS) disk were obtained on 1997 December 6 and 19 using the Space Telescope Imaging Spectrograph (STIS). An unsaturated spin-forbidden line of CI at 1613.376 A not previously seen in spectra of Beta Pictoris was detected, allowing for an improved determination of the column density of CI at zero velocity relative to the star (the stable component), N = (2-4) x 10^{16} cm^{-2}. Variable components with multiple velocities, which are the signatures of infalling bodies in the Beta Pictoris CS disk, are observed in the CI 1561 A and 1657 A multiplets. Also seen for the first time were two lines arising from the metastable singlet D level of carbon, at 1931 A and 1463 A The results of analysis of the CO A-X (0-0), (1-0), and (2-0) bands are presented, including the bands arising from {13}^CO, with much better precision than has previously been possible, due to the very high resolution provided by the STIS echelle gratings. Only stable CO gas is observed, with a column density N(CO) = (6.3 +/- 0.3) x 10^{14} cm{-2}. An unusual ratio of the column densities of {12}^CO to {13}^CO is found (R = 15 +/- 2). The large difference between the column densities of CI and CO indicates that photodissociation of CO is not the primary source of CI gas in the disk, contrary to previous suggestion.Comment: 13 pages, including 6 figures. LaTex2e (emulateapj5.sty). Accepted for publication in Ap

    Oscillator Strengths and Predissociation Rates for Rydberg Transitions in 12C16O, 13C16O, and 13C18O Involving the E 1Pi, B 1Sigma+, and W 1Pi States

    Full text link
    One of the processes controlling the interstellar CO abundance and the ratio of its isotopologues is photodissociation. Accurate oscillator strengths and predissociation rates for Rydberg transitions are needed for modeling this process. We present results on absorption from the E ^1Pi-X ^1Sigma^+ (1-0) and B ^1Sigma^+-X ^1Sigma^+ (6-0) bands at 1051 and 1002 \AA, respectively, and the vibrational progression W ^1Pi-X ^1Sigma^+ (v'-0) bands with v' = 0 to 3 at 972, 956, 941, and 925 \AA, respectively. The corresponding spectra were acquired at the high resolution (R ~ 30,000) SU5 beam line at the Super ACO Synchrotron in Orsay, France. Spectra were obtained for the ^12C^16O, ^13C^16O, and ^13C^18O isotopologues. These represent the most complete set of measurements available. Comparison is made with earlier results, both empirical and theoretical. While earlier determinations of oscillator strengths based on absorption from synchrotron radiation tend to be somewhat smaller than ours, the suite of measurements from a variety of techniques agree for the most part considering the mutual uncertainties. For the bands studied here, their relative weakness, or their significant line widths arising from predissociation, minimizes potential problems from large optical depths at line center in absorption measurements. Predissociating line widths could generally be extracted from the spectra thanks to the profile simulations used in the analysis. In many cases, these simulations allowed us to consider e and f parity levels separately and to determine the dependence of the width on rotational quantum number, J. Our results are consistent with earlier determinations, especially the widths inferred from laser experiments

    Antiferromagnet-mediated interlayer exchange: hybridization versus proximity effect

    Full text link
    We investigate the interlayer coupling between two thin ferromagnetic (F) films mediated by an antiferromagnetic (AF) spacer in F*/AF/F trilayers and show how it transitions between different regimes on changing the AF thickness. Employing layer-selective Kerr magnetometry and ferromagnetic-resonance techniques in a complementary manner enables us to distinguish between three functionally distinct regimes of such ferromagnetic interlayer coupling. The F layers are found to be individually and independently exchange-biased for thick FeMn spacers - the first regime of no interlayer F-F* coupling. F-F* coupling appears on decreasing the FeMn thickness below 9 nm. In this second regime found in structures with 6.0-9.0 nm thick FeMn spacers, the interlayer coupling exists only in a finite temperature interval just below the effective N\'eel temperature of the spacer, which is due to magnon-mediated exchange through the thermally softened antiferromagnetic spacer, vanishing at lower temperatures. The third regime, with FeMn thinner than 4 nm, is characterized by a much stronger interlayer coupling in the entire temperature interval, which is attributed to a magnetic-proximity induced ferromagnetic exchange. These experimental results, spanning the key geometrical parameters and thermal regimes of the F*/AF/F nanostructure, complemented by a comprehensive theoretical analysis, should broaden the understanding of the interlayer exchange in magnetic multilayers and potentially be useful for applications in spin-thermionics.Comment: 14 pages, 9 figure

    Herbivore benefits from vectoring plant virus through reduction of period of vulnerability to predation

    Get PDF
    Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector

    Rapid Redistribution of Synaptic PSD-95 in the Neocortex In Vivo

    Get PDF
    Most excitatory synapses terminate on dendritic spines. Spines vary in size, and their volumes are proportional to the area of the postsynaptic density (PSD) and synaptic strength. PSD-95 is an abundant multi-domain postsynaptic scaffolding protein that clusters glutamate receptors and organizes the associated signaling complexes. PSD-95 is thought to determine the size and strength of synapses. Although spines and their synapses can persist for months in vivo, PSD-95 and other PSD proteins have shorter half-lives in vitro, on the order of hours. To probe the mechanisms underlying synapse stability, we measured the dynamics of synaptic PSD-95 clusters in vivo. Using two-photon microscopy, we imaged PSD-95 tagged with GFP in layer 2/3 dendrites in the developing (postnatal day 10–21) barrel cortex. A subset of PSD-95 clusters was stable for days. Using two-photon photoactivation of PSD-95 tagged with photoactivatable GFP (paGFP), we measured the time over which PSD-95 molecules were retained in individual spines. Synaptic PSD-95 turned over rapidly (median retention times τ (r) ~ 22–63 min from P10–P21) and exchanged with PSD-95 in neighboring spines by diffusion. PSDs therefore share a dynamic pool of PSD-95. Large PSDs in large spines captured more diffusing PSD-95 and also retained PSD-95 longer than small PSDs. Changes in the sizes of individual PSDs over days were associated with concomitant changes in PSD-95 retention times. Furthermore, retention times increased with developmental age (τ (r) ~ 100 min at postnatal day 70) and decreased dramatically following sensory deprivation. Our data suggest that individual PSDs compete for PSD-95 and that the kinetic interactions between PSD molecules and PSDs are tuned to regulate PSD size

    Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds

    Get PDF
    Many plants respond to herbivory with an increased production of extrafloral nectar (EFN) and/or volatile organic compounds (VOCs) to attract predatory arthropods as an indirect defensive strategy. In this study, we tested whether these two indirect defences fit the optimal defence hypothesis (ODH), which predicts the within-plant allocation of anti-herbivore defences according to trade-offs between growth and defence. Using jasmonic acid-induced plants of Phaseolus lunatus and Ricinus communis, we tested whether the within-plant distribution pattern of these two indirect defences reflects the fitness value of the respective plant parts. Furthermore, we quantified photosynthetic rates and followed the within-plant transport of assimilates with 13C labelling experiments. EFN secretion and VOC emission were highest in younger leaves. Moreover, the photosynthetic rate increased with leaf age, and pulse-labelling experiments suggested transport of carbon to younger leaves. Our results demonstrate that the ODH can explain the within-plant allocation pattern of both indirect defences studied

    Social Transfer of Pathogenic Fungus Promotes Active Immunisation in Ant Colonies

    Get PDF
    Social contact with fungus-exposed ants leads to pathogen transfer to healthy nest-mates, causing low-level infections. These micro-infections promote pathogen-specific immune gene expression and protective immunization of nest-mates
    corecore