139 research outputs found

    Polymer coated vermiculite-iron composites: Novel floatable magnetic adsorbents for water spilled contaminants

    Get PDF
    Magnetic adsorbents based on vermiculite-iron have been prepared and characterized by magnetic measurements, BET surface area, Mössbauer spectroscopy, powder X-ray diffraction, scanning electron microscopy, thermogravimetric and differential scanning calorimetric analyses. These magnetic materials show two important features for the remediation of contaminated sites: (i) they float on water and can be used to adsorb/ absorb spilled oils and (ii) after adsorption they can be easily removed from the medium by a simple magnetic separation procedure. These magnetic materials have been coated/hydrophobized with polymers such as epoxy resin and polystyrene improving their oil remotion capacity, floatability and the chemical and mechanical resistance.Fil: Machado, L. C. R.. Universidade Federal de Minas Gerais; BrasilFil: Lima, F. W. J.. Universidade Federal de Minas Gerais; BrasilFil: Paniago, R.. Universidade Federal de Minas Gerais; BrasilFil: Ardisson, J. D.. Universidade Federal de Minas Gerais; BrasilFil: Sapag, Manuel Karim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich". Universidad Nacional de San Luis. Facultad de Ciencias Físico Matemáticas y Naturales. Instituto de Física Aplicada "Dr. Jorge Andrés Zgrablich"; ArgentinaFil: Lago, Rochel Montero. Universidade Federal de Minas Gerais; Brasi

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    Autonomic pain responses during sleep: a study of heart rate variability

    Get PDF
    The autonomic nervous system (ANS) reacts to nociceptive stimulation during sleep, but whether this reaction is contingent to cortical arousal, and whether one of the autonomic arms (sympathetic/parasympathetic) predominates over the other remains unknown. We assessed ANS reactivity to nociceptive stimulation during all sleep stages through heart rate variability, and correlated the results with the presence of cortical arousal measured in concomitant 32-channel EEG. Fourteen healthy volunteers underwent whole-night polysomnography during which nociceptive laser stimuli were applied over the hand. RR intervals (RR) and spectral analysis by wavelet transform were performed to assess parasympathetic (HF(WV)) and sympathetic (LF(WV) and LF(WV)/HF(WV) ratio) reactivity. During all sleep stages, RR significantly decreased in reaction to nociceptive stimulations, reaching a level similar to that of wakefulness, at the 3rd beat post-stimulus and returning to baseline after seven beats. This RR decrease was associated with an increase in sympathetic LF(WV) and LF(WV)/HF(WV) ratio without any parasympathetic HF(WV) change. Albeit RR decrease existed even in the absence of arousals, it was significantly higher when an arousal followed the noxious stimulus. These results suggest that the sympathetic-dependent cardiac activation induced by nociceptive stimuli is modulated by a sleep dependent phenomenon related to cortical activation and not by sleep itself, since it reaches a same intensity whatever the state of vigilance

    1α,25(OH)2-3-Epi-Vitamin D3, a Natural Physiological Metabolite of Vitamin D3: Its Synthesis, Biological Activity and Crystal Structure with Its Receptor

    Get PDF
    Background: The 1 alpha,25-dihydroxy-3-epi-vitamin-D(3) (1 alpha,25(OH)(2)-3-epi-D(3)), a natural metabolite of the seco-steroid vitamin D(3), exerts its biological activity through binding to its cognate vitamin D nuclear receptor (VDR), a ligand dependent transcription regulator. In vivo action of 1 alpha,25(OH)(2)-3-epi-D(3) is tissue-specific and exhibits lowest calcemic effect compared to that induced by 1 alpha,25(OH)(2)D(3). To further unveil the structural mechanism and structure-activity relationships of 1 alpha,25(OH)(2)-3-epi-D3 and its receptor complex, we characterized some of its in vitro biological properties and solved its crystal structure complexed with human VDR ligand-binding domain (LBD). Methodology/Principal Findings: In the present study, we report the more effective synthesis with fewer steps that provides higher yield of the 3-epimer of the 1 alpha,25(OH)(2)D(3). We solved the crystal structure of its complex with the human VDR-LBD and found that this natural metabolite displays specific adaptation of the ligand-binding pocket, as the 3-epimer maintains the number of hydrogen bonds by an alternative water-mediated interaction to compensate the abolished interaction with Ser278. In addition, the biological activity of the 1 alpha,25(OH)(2)-3-epi-D(3) in primary human keratinocytes and biochemical properties are comparable to 1 alpha,25(OH)(2)D(3). Conclusions/Significance: The physiological role of this pathway as the specific biological action of the 3-epimer remains unclear. However, its high metabolic stability together with its significant biologic activity makes this natural metabolite an interesting ligand for clinical applications. Our new findings contribute to a better understanding at molecular level how natural metabolites of 1 alpha,25(OH)(2)D(3) lead to significant activity in biological systems and we conclude that the C3-epimerization pathway produces an active metabolite with similar biochemical and biological properties to those of the 1 alpha,25(OH)(2)D(3)

    Low-Resolution Molecular Models Reveal the Oligomeric State of the PPAR and the Conformational Organization of Its Domains in Solution

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex
    • …
    corecore