36 research outputs found

    Permeability of self-affine rough fractures

    Full text link
    The permeability of two-dimensional fractures with self-affine fractal roughness is studied via analytic arguments and numerical simulations. The limit where the roughness amplitude is small compared with average fracture aperture is analyzed by a perturbation method, while in the opposite case of narrow aperture, we use heuristic arguments based on lubrication theory. Numerical simulations, using the lattice Boltzmann method, are used to examine the complete range of aperture sizes, and confirm the analytic arguments.Comment: 11 pages, 9 figure

    Symmetry-breaking phase-transitions in highly concentrated semen

    Get PDF
    New experimental evidence of self-motion of a confined active suspension is presented. Depositing fresh semen sample in an annular shaped micro- fluidic chip leads to a spontaneous vortex state of the fluid at sufficiently large sperm concentration. The rotation occurs unpredictably clockwise or counterclockwise and is robust and stable. Furthermore, for highly active and concentrated semen, richer dynamics can occur such as self-sustained or damped rotation oscillations. Experimental results obtained with systematic dilution provide a clear evidence of a phase transition toward collective motion associated with local alignment of spermatozoa akin to the Vicsek model. A macroscopic theory based on previously derived Self-Organized Hydrodynamics (SOH) models is adapted to this context and provides predictions consistent with the observed stationary motion

    Critical point network for drainage between rough surfaces

    Get PDF
    In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations

    Numerical Analysis of a New Mixed Formulation for Eigenvalue Convection-Diffusion Problems

    Get PDF
    A mixed formulation is proposed and analyzed mathematically for coupled convection-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore a new convection-diffusion operator, the properties of which are mathematically studied: its symmetry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization

    Transport in rough self-affine fractures

    Full text link
    Transport properties of three-dimensional self-affine rough fractures are studied by means of an effective-medium analysis and numerical simulations using the Lattice-Boltzmann method. The numerical results show that the effective-medium approximation predicts the right scaling behavior of the permeability and of the velocity fluctuations, in terms of the aperture of the fracture, the roughness exponent and the characteristic length of the fracture surfaces, in the limit of small separation between surfaces. The permeability of the fractures is also investigated as a function of the normal and lateral relative displacements between surfaces, and is shown that it can be bounded by the permeability of two-dimensional fractures. The development of channel-like structures in the velocity field is also numerically investigated for different relative displacements between surfaces. Finally, the dispersion of tracer particles in the velocity field of the fractures is investigated by analytic and numerical methods. The asymptotic dominant role of the geometric dispersion, due to velocity fluctuations and their spatial correlations, is shown in the limit of very small separation between fracture surfaces.Comment: submitted to PR

    Wave scattering from self-affine surfaces

    Full text link
    Electromagnetic wave scattering from a perfectly reflecting self-affine surface is considered. Within the framework of the Kirchhoff approximation, we show that the scattering cross section can be exactly written as a function of the scattering angle via a centered symmetric Levy distribution for general roughness amplitude, Hurst exponent and wavelength of the incident wave. The amplitude of the specular peak, its width and its position are discussed as well as the power law decrease (with scattering angle) of the scattering cross section.Comment: RevTeX, 4 pages including 2 figures. Submitted Phys. Rev. Let

    Size Effect in Fracture: Roughening of Crack Surfaces and Asymptotic Analysis

    Full text link
    Recently the scaling laws describing the roughness development of fracture surfaces was proposed to be related to the macroscopic elastic energy released during crack propagation [Mor00]. On this basis, an energy-based asymptotic analysis allows to extend the link to the nominal strength of structures. We show that a Family-Vicsek scaling leads to the classical size effect of linear elastic fracture mechanics. On the contrary, in the case of an anomalous scaling, there is a smooth transition from the case of no size effect, for small structure sizes, to a power law size effect which appears weaker than the linear elastic fracture mechanics one, in the case of large sizes. This prediction is confirmed by fracture experiments on wood.Comment: 9 pages, 6 figures, accepted for publication in Physical Review

    Shape optimization for the generalized Graetz problem

    Get PDF
    We apply shape optimization tools to the generalized Graetz problem which is a convection-diffusion equation. The problem boils down to the optimization of generalized eigen values on a two phases domain. Shape sensitivity analysis is performed with respect to the evolution of the interface between the fluid and solid phase. In particular physical settings, counterexamples where there is no optimal domains are exhibited. Numerical examples of optimal domains with different physical parameters and constraints are presented. Two different numerical methods (level-set and mesh-morphing) are show-cased and compared

    Hele-Shaw beach creation by breaking waves: a mathematics-inspired experiment

    Get PDF
    Fundamentals of nonlinear wave-particle interactions are studied experimentally in a Hele-Shaw configuration with wave breaking and a dynamic bed. To design this configuration, we determine, mathematically, the gap width which allows inertial flows to survive the viscous damping due to the side walls. Damped wave sloshing experiments compared with simulations confirm that width-averaged potential-flow models with linear momentum damping are adequately capturing the large scale nonlinear wave motion. Subsequently, we show that the four types of wave breaking observed at real-world beaches also emerge on Hele-Shaw laboratory beaches, albeit in idealized forms. Finally, an experimental parameter study is undertaken to quantify the formation of quasi-steady beach morphologies due to nonlinear, breaking waves: berm or dune, beach and bar formation are all classified. Our research reveals that the Hele-Shaw beach configuration allows a wealth of experimental and modelling extensions, including benchmarking of forecast models used in the coastal engineering practice, especially for shingle beaches

    Shadows in a self-affine landscape

    No full text
    corecore