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NUMERICAL ANALYSIS OF A NEW MIXED FORMULATION FOR
EIGENVALUE CONVECTION-DIFFUSION PROBLEMS∗

C. PIERRE† AND F. PLOURABOUÉ‡

Abstract. A mixed formulation is proposed and analyzed mathematically for coupled convec-
tion-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled
with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant
geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore
a new convection-diffusion operator, the properties of which are mathematically studied: its sym-
metry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact
resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set
of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsec-
torial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue
problem permits the reduction of the original three-dimensional problem into a two-dimensional one.
Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to
a step change of the wall temperature at the origin, is exhibited with the help of the operator’s
two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational
formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided
for axisymmetrical situations, the convergence of which is found to be consistent with the numerical
discretization.
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1. Introduction. Convection-diffusion problems are of importance in many
fields of application in thermal, chemical, and biomedical engineering sciences. More
specifically, heat or mass diffusion coupled with unidirectional convection is present in
many types of equipment such as heat pipes, heat exchangers (shell, tube, or plate),
chromatographs, reactors, and mass exchangers in microchannel artificial devices, and
it occurs in real biological tissues. This framework covers both parallel and counter
flow configurations.

A classical strategy for describing the temperature field T of tube-like configu-
rations in the applied literature is generally to assume the separation of variables
solution,

(1) T (x, y, z) =
∑
λ∈Λ

cλTλ(x, y)eλz ,

where z is the longitudinal coordinate along which the flow is aligned and x, y are
transverse coordinates. The usual subsequent steps [7] are then to search for the
eigenvalues/eigenfunctions λ/Tλ and finally compute the amplitude coefficients cλ.
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For a clear understanding of these points, returning to their origin is instructive.
Graetz and Nusselt [9, 17] studied the following simplified version of the problem: a
fluid flowing in a single duct at high Péclet number Pe (which is the ratio of convec-
tion to diffusion time scales), when longitudinal diffusion is negligible compared to
radial diffusion. The duct is assumed to be either a circular cylinder or made of two
parallel infinite plates. Such a symmetric configuration actually leads to simplified
one-dimensional problems. The original Graetz problem correspond to the case of
cylindrical duct. The radial coordinate being denoted r, it reads

1
r
∂r (r∂rT ) = Pev(r)∂zT,

with a Poiseuille parabolic velocity profile v(r). In this simplified framework, searching
for a separation of variables solution, we find

(2) T (r, z) = Tλ(r)eλPez ,
1
r

d

dr

(
r
dTλ

dr

)
= λvTλ,

which allows the definition of λ/Tλ as eigenvalues/eigenfunctions. Problem (2) is,
moreover, symmetric negative and self-adjoint with compact resolvent, justifying de-
composition (1), where Λ appears as a discrete subset of R

−. Moreover, the coefficients
cλ can be easily computed using the simple scalar product over variable r thanks to
the axisymmetry of the initial condition and the boundary conditions

cλ =
∫
T0(r)Tλ(r)rdr,

where T0 is the inlet condition at z = 0.
These results have historically justified (1) as an interesting heuristic. However,

as soon as the Graetz–Nusselt framework is modified, none of the previous steps
can be performed in a simple way. Indeed, many studies have explored possible
extensions to that framework. Among these extensions, the following two are of
particular importance: the extended Graetz problem, where the longitudinal diffusion
term is no longer neglected, and the conjugated Graetz problem, in which coupling
with a solid wall where diffusion occurs is considered. The difficulties met by previous
contributors when considering these two simple but nontrivial extensions are listed
below.

Looking for a separation of variables solution T (r, z) = Tλ(r)eλz no longer pro-
vides an eigenvalue problem. Precisely in the case of the conjugated Graetz problem,
the new problem to be solved for Tλ reads{

1
r∂r (r∂rTλ) = λPevTλ fluid part
1
r∂r (r∂rTλ) = −λ2Tλ solid part

+ coupling condition on the fluid/solid interface,

where the quadratic term λ2 is accounting for the axial diffusion along z. In such
a form, one can see that this problem is not an eigenvalue problem on the whole
fluid+solid domain.

Adding axial diffusion now permits information back-flow in the z < 0 direc-
tion, not only along the flow with z > 0. Therefore both positive and negative
eigenvalues λ are physically expected: the previous symmetric-negative structure
of the Graetz problem is no longer relevant here. However, until the work of Pa-
poutsakis, Ramakrishna, and Lim [18], detailed below, no attention had been paid
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660 C. PIERRE AND F. PLOURABOUÉ

to this important point. Early papers on the extended/conjugated Graetz problem
[26, 1, 15, 5, 6, 13, 27, 28, 16] assumed a negative spectrum (that could, at least in
principle, be complex) and a complete set of eigenfunctions by inserting a Graetz-
problem–like series solution into the convection-diffusion equation.

Still in these early works, as pointed out by Michelsen and Villadsen [16], the
difficulties of determining both the nonorthogonal eigenfunctions and the expansion
coefficients cλ appear critical. From a computational point of view the strategy used
by Hsu and Tam [13, 27, 28] using the Gram–Schmidt reorthogonalization procedure
has a high cost, especially when approaching the entrance region where a large number
of eigenvalues is necessary for a correct representation of the solution.

The domain definition and inlet condition also raise new questions and difficulties.
In early papers, the flow domain is set as the positive real axis, and the assumption
of uniform fluid temperature at the inlet has been widely used. As pointed out in
[18, 29], e.g., when axial diffusion is permitted, the uniform inlet condition is invalid
since the temperature would be altered by upstream conduction before reaching the
inlet location.

The most important progress in overcoming these difficulties has been made by
Papoutsakis, Ramakrishna, and Lim in a series of innovative papers [19, 20, 18]. Paper
[18] proposes a new formulation of the extended Graetz problem, adding a second
unknown temperature flux, leading to a symmetric eigenvalue problem. This approach
thus solves the problem regarding the spectrum location (real eigenvalues only) and
provides an adequate formulation for the amplitude coefficient cλ computation. This
approach has been successfully used in a series of recent papers by Weigand et al. [30,
33, 32, 31] and Ho, Yeh, and Yang for various heat exchanger configurations; see, e.g.,
[12, 11]. Hence, to our knowledge, there is no complete theoretical foundation for
decomposition (1). This lack of theoretical framework, despite the commonly used
terminology, does not permit Λ and Tλ to be defined via an eigenvalue problem, all
the more so a symmetrical one. On the one hand, this is a fundamental problem for
the definition of Λ’s topology and location, though it is always assumed to be real and
discrete. On the other hand, this is a practical issue for the numerical computation
of Tλ and of the coefficients cλ for which no direct orthogonal properties are available
from a simple, scalar-product–based, definition.

In our opinion, three important issues are still pending concerning the framework
of Papoutsakis, Ramakrishna, and Lim:

1. It only covers symmetrical configurations such as circular ducts or rectangular
channels;

2. the extension to the conjugated Graetz problem proposed in [19, 20] remains
heavy and complicated;

3. from a theoretical point of view, only a symmetry property has been proved.
This is not sufficient to justify either the discrete structure of the considered
spectrum or the finite order of the eigenfunctions. For this, self-adjointness
results as well as compactness properties are necessary, which haven’t been
proved yet, weakening the legitimacy of the proposed decomposition (1).

The aim of this paper is to address these issues in a very general tube configuration
(we assume no symmetry of the tube section) for any general unidirectional velocity
profile (for example, allowing non-Newtonian velocity profiles).

At this point, it is important to stress that the mathematical justification of the
previous approaches is not the main motivation of the present contribution. The
framework proposed here is opening new perspectives for the computation of a large
variety of configurations that have not been considered previously. A major conse-
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quence of this work is a complete description of the original three-dimensional prob-
lem by solving a two-dimensional one only, whose numerical discretization is obviously
much lighter. Moreover, this two-dimensional problem to be solved can naturally be
embedded into a simple mixed variational formulation. This provides a wide class of
standard discretization using mixed finite-element methods that can be implemented
with basic finite-element libraries.

The physical and geometrical frameworks are described in section 2. Section 3
develops a theoretical investigation of equation (1) decomposition for the tempera-
ture solution. Subsection 3.1 introduces a reformulation of the problem which allows
the search for a separation of variables solution and leads to an eigenvalue problem.
In subsection 3.2 the functional properties of the eigenvalue problem operator are
established. It is proved to be symmetric and, moreover, self-adjoint with a com-
pact resolvent on a basic Hilbert space. At the end of this theoretical section, these
results are used in subsection 3.3 to display a full decomposition of a temperature
field for which far field conditions are substituted for an inappropriate inlet condition
at z = 0. This decomposition appears efficient from a computational point of view
since it exhibits only the eigenvalues/eigenvectors of the problem as well as easily
computable coefficients using simple scalar products. In section 4, it is shown that
the eigenvalue problem is naturally equivalent to a mixed variational problem, thus
providing a simple computational framework to solve the eigenvalue problem in terms
of mixed finite-element methods. The remaining part of this section is devoted to
the analysis of the numerical convergence of the method. We restrict ourselves to
symmetric configurations where analytical solutions are available allowing an a priori
error estimate of the solution. In this last section we notably study the previously
discussed extended Graetz and conjugated Graetz problems.

2. Physical statement.

2.1. Geometry, general assumptions, and notation. The domain consid-
ered here is an infinite cylinder Z = Ω×R having a cross-sectionΩ ⊂ R

2 (assumptions
on Ω are stated below) as displayed in Figure 1. The coordinate system relative to Ω
will be denoted by (x, y) and the axial coordinate by z ∈ R.

x

y

z

Ω1

Ω2

Ω3

v1 = 0

v2

v3

n

n2,1

Fig. 1. Domain cross-section Ω (left) and whole domain Z = Ω × R (right).

The domain cross-section Ω is assumed bounded and its boundary ∂Ω is taken
to be smooth (C1 regularity). Its outward normal is denoted by n. Ω is divided into
a collection of open subdomains Ωi (1 ≤ i ≤ N) with smooth boundaries, disjoint
(Ωi ∩Ωj = ∅ if i �= j) and such that Ω = ∪iΩi. The interface between Ωi and Ωj (if
nonempty) is denoted by Γij = Ωi∩Ωj , and its unit normal, outward from Ωi towards
Ωj , will be denoted by nij . These assumptions ensure that the seminorm

∫
Ω
|∇u|2dx
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662 C. PIERRE AND F. PLOURABOUÉ

is a norm on H1
0 (Ω) equivalent to the H1 norm (Poincaré inequality) and also that

H1
0 (Ω) and H1(Ωi) have compact embedding into L2(Ω) and L2(Ωi), respectively

(see, e.g., [8, 3]).
The flow in the fluid part is assumed to be established and laminar, so that the

velocity v = v(x, y)ez is along the z direction and is a function of (x, y) only. The
velocity profile v is only assumed bounded, i.e., v ∈ L∞(Ω), though it is physically
continuous in all applications. Solid subdomains Ωi are taken into account by setting
v|Ωi

= 0. v > 0 (resp., v < 0) on Ωi naturally means that Ωi is a fluid subdomain
where the flow is in the z > 0 (resp., z < 0) direction.

The conductivity k is isotropic but heterogeneous. Precisely, k is a bounded,
positive, and piecewise constant function constant on every Ωi:

(3) 0 < α ≤ k(x) ≤ β < +∞ a.e. in Ω, ki := k|Ωi
∈ R.

Ti := T|Ωi
indicates the restriction of the function T to the subdomain Ωi. Con-

ventionally here, the differential operators div, ∇ are considered on R
2 only, i.e.,

divp = ∂xp1 + ∂yp2 and ∇f = (∂xf, ∂yf), for a vector field p and a scalar function
f , respectively.

2.2. Energy equation. On the infinite cylinder Z = Ω×R. The dimensionless
energy equation is

(4) div(k∇T ) + k∂2
zT = Pe v∂zT,

where Pe is the dimensionless Péclet number. On the cylinder boundary ∂Z, constant
temperatures are imposed, with a step change at the entry z = 0,

(5)

{
T|∂Z = 1 if z < 0,
T|∂Z = 0 if z > 0.

Relevant limit conditions as z → ±∞ therefore are

(6) T (·, z) →
z→−∞ 1, T (·, z) →

z→+∞ 0.

Coupling conditions at the subdomain interfaces also are required; physically standing
for the continuity of the temperature (concentration) and of the normal heat (mass)
flux, they read

(7) Ti = Tj and ki∇Ti · nij = kj∇Tj · nij on Γij ,

whenever the interface Γij is nonempty, the dot product naturally standing for the
scalar product in R

2.

3. Mathematical analysis.

3.1. Problem reformulation. Equation (4) is reformulated into a system of
two first order differential equations

∂zT = Pe v k−1 T − k−1div(p),(8)
∂zp = k∇T,(9)

where T still denotes the dimensionless temperature (or concentration), and the ad-
ditional unknown p denotes a vector valued function on Ω.
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Albeit mathematically correct, this formulation calls for some physical justification.
Formulation (8)–(9) is derived from the splitting of the three-dimensional divergence
operator (4) into a two-dimensional contribution in the transverse plane and a lon-
gitudinal one along the z coordinate. The transverse contribution of the flux on the
right-hand side of relation (9) is integrated along the longitudinal direction in vector
p. Thus this contribution acts as a source term along the one-dimensional longitudinal
convection-diffusion formulation on the right-hand side of relation (8). This splitting
which is allowed from the integration of the flux along the longitudinal direction in (9)
is possible for longitudinally invariant problems hereby considered. It then permits
the formal integration of the solution along the longitudinal direction and reduces the
dimensionality of the problem from three to two.

Introducing the following unbounded operator A : D(A) ⊂ H �→ H on a Hilbert
space H and with domain D(A) (whose definitions follow), system (8) takes the form
of an ODE on the infinite-dimensional space H with unknown Φ(z) ∈ H:

(10)
d

dz
Φ(z) = AΦ(z) Φ(z) =

∣∣∣∣ T (z)
p(z) , A =

(
Pe vk−1 −k−1div(·)
k∇· 0

)
.

The space H is defined as the Hilbert space product H = L2(Ω) × (L2(Ω))2,
where (L2(Ω))2 is the space of square integrable vector valued functions on Ω. H is
equipped with the following scalar product:

(11) (Ψ1, Ψ2)H =
(∣∣∣∣ T1

p1
,

∣∣∣∣ T2

p2

)
H

=
∫

Ω

T1T2kdx +
∫

Ω

p1 · p2k
−1dx.

Note that this scalar product on H is equivalent to the canonical one (taking k = 1) by
using assumption (3). It has been modified to ensure the symmetry of the operator A.

Relative to a homogeneous Dirichlet boundary condition, the domain D(A) is
given as D(A) := H1

0 (Ω) × H(div, Ω), where H(div, Ω) =
{
p ∈ (L2(Ω))2, div(p) ∈

L2(Ω)
}

in the distribution sense. We shall refer to [4] for the basic properties of the
space. Such a definition of D(A) ensures that A : D(A) ⊂ H �→ H in (10) is well
defined.

Proposition 1. The operator A is dense and symmetric:

(12) ∀ Ψ1, Ψ2 ∈ D(A) : (AΨ1, Ψ2)H = (Ψ1, AΨ2)H .

Proof. The density of A directly follows from its definition. Denoting

Ψj =
∣∣∣∣ Tj

pj
, j = 1, 2,

using the Green formula and the fact that Tj ∈ H1
0 (Ω) yields

(AΨ1, Ψ2)H =
∫

Ω

Pe vT1T2dx −
∫

Ω

div (p1)T2dx +
∫

Ω

∇T1 · p2dx

=
∫

Ω

Pe vT2T1dx +
∫

Ω

p1 · ∇T2dx −
∫

Ω

T1div (p2) dx

= (Ψ1, AΨ2)H .
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3.2. Spectral analysis of A. In this section, the main theoretical result of our
study is proved. We show that A is self-adjoint and that (0 excepted), its spectrum
is made of eigenvalues of finite order only, the corresponding eigenfunctions forming
a Hilbert (complete) base of (Ker A)⊥ = Ran A. We observe that denoting by Ψn =
(Tn,pn) the components of the nth eigenfunction (AΨn = λnΨn) and introducing
T (x, y, z) = eλnzTn(x, y), we have

div(k∇Tn) + λ2
nkTn = λnPe vTn and div(k∇T ) + k∂2

zT = Pe v∂zT ,

and T is a solution of the original energy equation (4). Incidentally, we also recover
the so-called eigenvalues/eigenfunctions of the previously quoted literature [1, 2, 6, 5,
13, 27, 28, 15, 26]. This theorem therefore brings full legitimacy to the decompositions
routinely found in the literature.

Theorem 1. A : D(A) ⊂ H �→ H is self-adjoint and has a compact resolvent.
We introduce the Kernel of A, Ker A = {(0,p), p ∈ H0(div, Ω)}, where H0(div, Ω)

= {p ∈ H(div, Ω), div p = 0}. Then there exists a Hilbert base (Ψn)n∈N of Ran A =
(Ker A)⊥ composed of eigenfunctions: Ψn ∈ D(A), AΨn = λnΨn, ‖Ψn‖H = 1. The
coordinates of Ψn are denoted Ψn = (Tn,pn) = (Tn, k∇Tn/λn). We therefore have

D(A) =

{
Ψ ∈ H ,

∑
n

|λn(Ψ, Ψn)H|2 < +∞
}
, AΨ =

∑
n

λn(Ψ, Ψn)HΨn

for all Ψ ∈ D(A).
Moreover this base can be split into two parts

(
Ψ+

i

)
i∈N

and
(
Ψ−

i

)
i∈N

such that

(13) 0 > λ+
1 ≥ · · · ≥ λ+

j ≥ · · · → −∞, 0 < λ−1 ≤ · · · ≤ λ−j ≤ · · · → +∞.

The corresponding eigenfunctions are denoted Ψ±
n . Eigenvalues and eigenfunctions,

according to this decomposition, are respectively called upstream (+) and downstream
(-).

In the proof, we shall use the following regularity result (see [14, pp. 192–196]).
Lemma 1. For any f ∈ L2(Ω), there exists a unique T ∈ H1

0 (Ω) satisfying
div(k∇T ) = f in the distribution sense. That solution also satisfies, on each subdo-
main Ωi, Ti ∈ H2(Ωi), div(k∇T ) = f in L2(Ωi) (strong sense), and ‖Ti‖H2(Ωi) ≤
C‖f‖L2(Ω) (C independent on f). Moreover T satisfies on every interface Γi,j the
coupling conditions (7) in the trace sense.

Proof. A is dense and symmetric. Since vk−1 ∈ L∞(Ω), A is also a continuous
perturbation of the symmetric operator A0 : D(A) ⊂ H �→ H defined as

A0 =
(

0 −k−1div(·)
k∇· 0

)
.

Using the Kato–Relish theorem (see, e.g., [24, p. 163]), the self-adjointness of A0

implies the self-adjointness of A. To prove the self-adjointness of A0, one shows that
A0 + i has range H (see, e.g., [23]).

Let us fix (f,q) ∈ H. We search for T ∈ H1
0 (Ω) such that

∀ ϕ ∈ H1
0 (Ω) :

∫
Ω

Tϕkdx+
∫

Ω

k∇T · ∇ϕdx =
∫

Ω

∇ϕ · qdx−
∫

Ω

iϕfkdx.

The right-hand side clearly has a continuous linear form on H1
0 (Ω), whereas the left-

hand side exhibits a symmetric, positive, continuous, and coercive bilinear product
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on H1
0 (Ω). As a result, the Lax–Milgram theorem applies (see, e.g., [8]) ensuring the

existence and uniqueness of such a T . Let us define ip = q− k∇T ∈ (L2(Ω))2. From
the above equality we obtain

∀ ϕ ∈ C∞
c (Ω) :

∫
Ω

ip · ∇ϕdx =
∫

Ω

k(if + T )ϕdx.

This equality shows that, in the distribution sense, div(p) ∈ L2(Ω) and we have
p ∈ H(div, Ω). Thus Ψ = (T,p) ∈ D(A) and one has (A0 + i)Ψ = (f,q), proving the
self-adjointness of A0 and A.

To prove that A has a compact resolvent, we introduce the pseudoinverse of A,
A−1 : Ran A �→ (Ker A)⊥∩D(A) = Ran A∩D(A), and we prove that A−1 is compact.

For this let us consider a bounded sequence (fn,qn) ∈ Ran A. There is a unique
(Tn,pn) ∈ Ran A∩D(A) satisfying A(Tn,pn) = (fn,qn). (Tn) then satisfies k∇Tn =
qn and therefore forms a bounded sequence in H1

0 (Ω). The compact embedding
H1

0 (Ω) �→ L2(Ω) thus implies that (Tn) is relatively compact in L2(Ω).
We now introduce ϕn ∈ H1

0 (Ω), the unique variational solution to div(k∇ϕn) =
Pe vTn − kfn. Let us prove that pn = k∇ϕn. Since A(Tn, k∇ϕn) = (fn,qn), we have
to check that (Tn, k∇ϕn) ∈ (Ker A)⊥ that follows from

∀ p ∈ H0(div, Ω) :
(∣∣∣∣ Tn

k∇ϕn
,

∣∣∣∣ 0
p

)
H

=
∫

Ω

∇ϕn · pdx = −
∫

Ω

ϕndiv(p)dx = 0.

Lemma 1 then applies and ensures that ϕn|Ωi
∈ H2(Ωi) and that, since (Pe vTn−kfn)

is bounded in L2(Ω), (ϕn|Ωi
) is bounded in H2(Ωi). Therefore both components of

(∇ϕn|Ωi
) are bounded in H1(Ωi), thus implying that both components of (pn|Ωi

) also
are bounded in H1(Ωi). The compact embedding H1(Ωi) ⊂ L2(Ωi) then ensures that
(pn) is relatively compact in L2(Ω).

Consequently, A−1 is compact and self-adjoint on the separable space Ran A.
Therefore there exists a Hilbert base (Ψn)n∈N for Ran A made of eigenfunctions:
Ψn ∈ D(A), Aψn = λnΨn.

A−1 being compact, 0 is the only limit point for subsequences of (1/λn), and thus
{−∞,+∞} are the only two possible limit points for subsequences of (λn). It is easily
seen that, whatever the value of α ∈ R, A + α is bounded neither below nor above.
The spectrum is therefore also neither bounded below nor above. Thus {−∞,+∞}
are both limit points for the spectrum, implying decomposition (13).

3.3. Solution derivation. The results of the previous section are used here to
derive the solution Φ(z) = (T (z),p(z)) to (8)–(10) such that T satisfies the boundary,
limit, and interface conditions in (5)–(6) and (7). We point out that the boundary
condition (5) implies that, for z < 0, one does not have Φ(z) ∈ D(A). For this to
be taken into account, we shall consider the (maximal) extension A to operator A as
follows:

• D(A) = H1(Ω) ×H(div, Ω),
• A : D(A) �→ H has the same algebraic expression as A in (10).

Unlike A, A is not symmetric:

(14) (AΨ1, Ψ2)H = (Ψ1, AΨ2)H +
∫

∂Ω

T1p2 · nds−
∫

∂Ω

T2p1 · nds

for all pairs of functions in D(A), with the usual notation.
Definition 1. We shall define a solution to (8)–(10) with conditions (5), (6),

and (7) as a function Φ : z ∈ R �→ Φ(z) = (T (z),p(z)) ∈ H such that
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• Φ ∈ C (R,H) (continuity on R),
• Φ ∈ C1 (R − {0},H) (continuous Fréchet differentiability on R − {0}),
• for all z ∈ R − {0}, Φ(z) ∈ D(A) and d

dzΦ(z) = AΦ(z),
and such that T satisfies the limit condition (6) as z → ±∞ in H’s norm and the
boundary and interface conditions (5)–(7) for all z �= 0 in the trace sense.

That formalism being stated, we have the following.
Proposition 2. There exists a unique solution Φ to (8)–(10) with conditions

(5), (6), and (7). Defining the constants (αn),

(15) αn :=
1
λ2

n

∫
∂Ω

k∇Tn · nds =
1
λn

∫
∂Ω

pn · nds,

this solution is given as follows:

(16) Φ(z) =

⎧⎪⎨
⎪⎩

−
∑

n

αnΨn +
∑

n

α−
n e

λ−
n zΨ−

n , z ≤ 0,

−
∑

n

α+
n e

λ+
n zΨ+

n , z ≥ 0.

The expression can moreover be simplified, and the temperature field is given by

(17) T (z) =

⎧⎪⎨
⎪⎩

1 +
∑

n

α−
n e

λ−
n zT−

n , z ≤ 0,

−
∑

n

α+
n e

λ+
n zT+

n , z ≥ 0.

Since A is not sectorial (is not the infinitesimal generator of an analytic semigroup;
see, e.g., [10]), some precautions have to be taken in demonstrating the proposition.
A detailed proof follows.

Proof. Using the Hilbert base (Ψn) of (Ker A)⊥, the solution Φ is sought in
the form Φ(z) =

∑
n(Φ(z), Ψn)HΨn. All coefficients must therefore satisfy the ODE

d
dz (Φ(z), Ψn)H = (AΦ(z), Ψn)H. Then using (14), the boundary condition (5) and the
equality k∇Tn = λnpn, we find that

d

dz
(Φ, Ψn)(z) = (Φ,AΨn)(z) + ω(z)

∫
∂Ω

pn · nds = λn(Φ, Ψn)(z) + λnαnω(z),

where ω(z) = 0 when z > 0 and ω(z) = 1 otherwise. Looking for a bounded and
continuous solution to this ODE on R gives us a unique solution, according to λn’s
sign (λ+

n < 0 and λ−n > 0), that reads

(Φ, Ψ−
n )(z) =

{
α−

n (eλ−
n z − 1), z < 0,

0, z > 0,
(Φ, Ψ+

n )(z) =
{ −α+

n , z < 0,
−α+

n e
λ+

n z, z > 0.

This gives us decomposition (16) and the uniqueness of the solution. Let us now prove
that Φ defined by (16) is a solution with the sense in Definition 1.

Consider the (unique) function ϕ∞ ∈ H1
0 (Ω) such that div(k∇ϕ∞) = Pe v. We

introduce

Φ∞ =
∣∣∣∣ 1
k∇ϕ∞

∈ H,
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a function that clearly satisfies Φ∞ ∈ D(A), AΦ∞ = 0, and Φ∞ ∈ (Ker A)⊥. Let us
prove that Φ∞ = −∑

n αnΨn (thus explaining how to go from (16) to (17)). Since
λnpn = k∇Tn,

(Φ∞, Ψn)H =
∫

Ω

Tnkdx+
1
λn

∫
Ω

k∇ϕ∞ ·k∇Tnk
−1dx =

∫
Ω

Tnkdx− 1
λn

∫
Ω

Pe vTndx,

and using the equality λnkTn = Pe vTn − 1
λn

div(k∇Tn), we obtain

(Φ∞, Ψn)H = − 1
λ2

n

∫
Ω

k∇Tn · nds = − αn.

Thus −∑
n αnΨn = Φ∞ ∈ H, and it follows that Φ±

∞ = −∑
n α

±
nΨn ∈ H and Φ∞ =

Φ−∞ + Φ+∞. We use the fact that Φ ∈ D(A) if and only if
∑

n |λn(Φ, Ψn)H|2 < +∞.
Since λ+

n →
n

−∞ (resp., λ−n →
n

+∞), it is straightforward to check that the two
functions,

f(z) =
∑

n

α−
nΨ

−
n e

λ−
n z, g(z) =

∑
n

α+
nΨ

+
n e

λ+
n z,

satisfy the following:
• f ∈ C ((−∞, 0],H), g ∈ C ([0,+∞),H) (continuity);
• f ∈ C1 ((−∞, 0),H), g ∈ C1 ((0,+∞),H) (continuous Fréchet differentiabil-

ity);
• for z < 0 (resp., z > 0), f(z) ∈ D(A) (resp., g(z) ∈ D(A)), and d

dz f(z) =
Af(z) (resp., d

dzg(z) = Ag(z)).
The function Φ in (16) can be rewritten as Φ(z) = Φ∞+f(z), z ≤ 0, and Φ(z) = −g(z),
z ≥ 0 (whose functions actually match at z = 0 using Φ∞ = Φ−

∞+Φ+
∞). It is therefore

continuous on R, Fréchet differentiable on R−{0}, Φ(z) ∈ D(A), and d
dzΦ(z) = AΦ(z)

for z ∈ R−{0} since AΦ∞ = 0. It is also clear that T (z) satisfies the limit condition (6)
and the boundary condition (5) for z �= 0.

It remains to be proved that the function Φ in (16) also satisfies the interface
conditions (7) for z �= 0. For this, let us consider the previously introduced function
f whose components will be denoted as f(z) = (t(z),p(z)). Since λ−n →

n
+∞, it is

easy to check that, for z < 0, Af(z) ∈ D(A). Therefore k∇t(z) ∈ H(div, Ω), which
implies that div(k∇t)(z) ∈ L2(Ω) for z < 0. Applying Lemma 1, it follows that t(z)
satisfies the interface conditions (7). The same result applies to g(z) for z > 0 and,
as a result, to T (z) for z �= 0.

4. Mixed variational formulation and approximation.

4.1. Mixed variational formulation. Let us consider the following variational
problem: Find (λ, T,p) ∈ R × L2(Ω) ×H(div, Ω) such that, for all (u,q) ∈ L2(Ω) ×
H(div, Ω), ∫

Ω

Pe vTudx −
∫

Ω

udiv(p)dx = λ

∫
Ω

Tukdx,(18)

−
∫

Ω

Tdiv(q)dx = λ

∫
Ω

p · qk−1dx.(19)

It is clear that whenever Ψn is an eigenfunction as given in Theorem 1, then (λn, Tn,pn)
satisfies the variational problem above. Conversely if (λ, T,p) satisfies (18)–(19) for
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all (u,q) ∈ L2(Ω)×H(div, Ω), then the second line implies that T ∈ H1
0 (Ω) (using the

dense embedding of H(div, Ω) into H1/2(∂Ω)′; see [4]). Therefore Ψ = (T,p) ∈ D(A)
and satisfies AΨ = λΨ . Thus Ψ = Ψn for some n, and solving (18)–(19) is equivalent
to finding all the eigenvalues/eigenfunctions of operator A.

4.2. Axisymmetrical implementation. In order to test this variational for-
mulation, we have derived a one-dimensional version of the problem which is inter-
esting in the case of axisymmetrical configurations. The motivation is to test the
convergence of the problem numerically on known solutions. The simplest case is
convection-diffusion inside a single cylinder for which, in the limit of large Péclet
numbers, we should recover the Graetz spectrum [9] for the operator A. In this sub-
section we consider the somewhat more general case of two concentric cylinders, for
which Ω = Ω1 ∪ Ω2, with Ω1 an inner disk filled with liquid and Ω2 an outer solid
corona. When the size of the second domain is to set to zero, the single cylinder
problem is found again as a particular case.

A liquid flows inside Ω1 with a unidirectional, longitudinal, dimensionless velocity
v(r)ez which varies from a maximal value at the cylinder center r = 0 to zero at the
boundary, with the second cylinder placed at r = r0. We choose the dimensionless
velocity to follow the usual Poiseuille flow profile v(r) = 2Pe(r20 − r2), although
any continuous profile being zero at the boundary could be chosen. The velocity
normalization is set so that normalized surface averaged velocity flux is the Péclet
number

1
‖Ω1‖

∫
Ω1

v(r)dΩ1 = Pe,

where ‖Ω1‖ = πr20 is the inner disk area associated with the first inner cylinder
section. In corona Ω2 the velocity is taken to be zero; no convection occurs in this
second domain. Continuity of flux and temperature (7) are applied at the domain
frontier ∂Ω2∩∂Ω2 with uniform conductivity k = 1. The radial dimensionless distance
is chosen so that r = 1 corresponds to the outer boundary of the second cylinder
∂Ω2 − ∂Ω1 ∩ ∂Ω2, where a homogeneous Dirichlet boundary condition (5) is chosen.

Problem (18)–(19) is approximated on a regular one-dimensional mesh discretizing
coordinate r ∈ [0, 1] with index i on grid r = i/n with i ∈ {1, n}. We adopt here
the classical mixed finite-element approximation of order 0 of Raviart and Thomas,
P0 ×RT0 (see, e.g., [4]), in the present axisymmetrical one-dimensional formulation.
Base elements for the scalar T are therefore P0 piecewise constant functions over the
grid elements, whereas base elements for the vector p are the P1 continuous piecewise
affine functions over the grid elements, thus re-establishing the flux continuity at the
grid points.

The generalized linear eigenvalue problem resulting from this discretization choice
is as follows:

(20) AΨn =
(

a b
bT 0

)
Ψn = λn

(
c 0
0 d

)
Ψn,

where Ψn is a 2n component vector whose first n components are the discrete tempera-
ture field Tn = (Ti)i∈{1,n} approximating Tλ, and the following n+1 to 2n components
describe pn approximating the gradient field pλ = ∂rTλ/λ which is one-dimensional
in this axisymmetrical context. The n× n matrices a, b, c, and d can be computed
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analytically and admit the following coefficients:

(21)

aij = −δij Pe
2r0n4

(2i− 1)(2i2 − 2i− 2r20n
2 + 1),

bij = − 1
n

( δiji+ δi−1j(1 − i) ) ,

cij = δij
2i− 1
2n2

,

dij = − 1
12n2

( δij8i + δi−1j(2i− 1) + δi+1j(2i+ 1) ) ,

where (i, j) ∈ {1, n}2 and δ is the Kronecker symbol.

4.3. Numerical results and convergence. In the generalized eigenvalue prob-
lem (20), one notes that the matrix A is symmetric and that the right-hand side
mass-matrix Diag(c,d) is symmetric positive definite. Therefore, problem (20) can
be numerically solved using the variant of the Lanczos algorithm for generalized eigen-
value problems (see, e.g., [25]). The resulting first eigenvectors and eigenvalues were
computed using the Fortran library ARPACK and sparse matrix storage. The results
presented here correspond to the following two particular configurations:

• a single cylinder with a single radial domain Ω1 for which r0 = 1, and
• two concentric cylinders whose radius ratio is two, so that r0 = 1/2.

We study the numerical convergence of the first eigenvalues and first eigenvectors when
the Péclet number is varied from low to high values. We systematically compared the
discrete numerical results with reference solutions obtained with another iterative
method explained in the appendix.

4.3.1. Single cylinder: r0 = 1. In the case of a single cylinder, for large
values of the Péclet number, the upstream part of A’s spectrum (positive eigenvalues
λ−n associated with the z < 0 region) is difficult to compute numerically because it
diverges with Pe [21]. In contrast, the downstream part of the spectrum (negative
eigenvalues λ+

n associated with the z > 0 region) converges to the Graetz spectrum
and decays to zero as 1/Pe when the Péclet number increases.

Let us first discuss the eigenvalue convergence. Figure 2 illustrates the relative
error E =

√
(λn − λ)2/λ associated with the first two downstream eigenvalues λ+

1

and λ+
2 and with the first upstream one λ−1 . It can be seen in this figure that the

convergence of the numerical estimation is consistent with the chosen classical mixed
finite-element approximation space P0×RT0, for which a ∼ 1/n behavior is expected.
Furthermore, the strong influence of the Péclet number on the convergence rate can
also be observed. For small Péclet number, the spectrum is almost symmetrical, so
that one expects the convergence for λ+

1 and λ−1 to be very close, as observed in
Figure 2(a). In contrast, as the Péclet number increases, there is a distinct shift
in the convergence curve. The closer the eigenvalue is to zero, the easier it is to
compute. Since λ−1 diverges with Pe, it is more difficult to approximate numerically
and, then, the relative error associated with λ−1 in Figure 2(b) is 30% larger than the
one associated with λ+

1 for Pe = 10. This difference further increases with the Péclet
number. We also wish to illustrate the numerical convergence on the eigenfunction.
Figure 3 illustrates the eigenvector computation for the temperature and gradient
fields associated with λ+

1 , λ+
2 , and λ−1 eigenvalues. In the case of small Péclet number,

the asymptotic symmetry of the eigenvalue spectrum also implies a symmetry of
the eigenvectors, which is clearly visible when comparing the 1+ and 1− fields in
Figure 3. The associated leading order eigenfunction shows a single maximum at
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10
1

10
2

10
−3

10
−2

1+
2+
1−

(a)

log10E

log10 n
10

1
10

210
−3

10
−2

10
−1

1+
2+
1−

(b)

log10E

log10 n

Fig. 2. (a) Relative numerical error for eigenvalues λ+
1 , λ+

2 , and λ−
1 for Pe = 0.1. The dotted

lines corresponds to a −1 slope associated with a ∼ 1/n behavior. (b) Same convention as (a) for
Pe = 10.

r = 0, the cylinder center, and obviously decreases to zero at r = 1 for the Dirichlet
boundary condition to be fulfilled. When the associated eigenvalue order increases,
the corresponding eigenfunction has as many oscillations as the eigenvalue order. For
example, for λ+

2 , two critical points can be seen, a minimum and a maximum, for
the eigenfunction in Figure 3. The superposition between the discrete numerical
computation and the “exact” solution is also illustrated in Figure 3. One can see that
the comparison for the gradient depicted in Figure 3(b) is rough for n = 20, but no
difference is visible between the two for n = 320 in Figure 3(d). The convergence to
the exact solution is also illustrated in Figure 4 for Pe = 10. In this case the two
eigenfunctions associated with λ+

1 and λ−1 differ markedly. The first one, associated
with λ+

1 , still reaches a maximum at the tube center r = 0, whereas the maximum
position of the second one, associated with λ−1 , is shifted close to the tube boundary
at r = 1. Furthermore, this second eigenfunction decays to zero at the tube center.
The reason for this distinct behavior is now the opposite role of convection for these
two temperature profiles. For the downstream eigenfunction associated with λ+

1 ,
longitudinal convection prevails over diffusion. Since this convection is maximum at
the tube center, it dictates the shape of the corresponding temperature profile. For the
upstream eigenfunction associated with λ−1 , retrodiffusion is the only mechanism for
this temperature to display a back-flow exponential decay. Hence, since the convection
is maximal at the tube center, retrodiffusion is maximum at the tube boundary, where
the velocity vanishes. A boundary layer develops near r = 1, the thickness of which
decays to zero as the Péclet number diverges. This boundary layer is responsible
for the numerical difficulties arising in the computation of the upstream part of the
spectrum at large Péclet number. The slower convergence of the eigenvectors 1− is
clearly visible in Figures 4(a) and (b) for a rough discretization of n = 20 points.
Although in this case, the first two downstream eigenfunctions, 1+ and 2+, are well
approximated by the corresponding eigenvectors, this is not the case for the upstream
1−. Nevertheless, for a sufficient discretization of n = 320 points, the convergence
can be satisfactory as illustrated in Figures 4(c) and (d).

We finally wish to illustrate the convergence on the eigenvector by computing
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Fig. 3. (a) Temperature field T (i/n) i ∈ {1, n} for discretization n = 20 and Pe = 0.1 with the
first two downstream eigenvectors 1+ and 2+ and the first upstream eigenvector 1−. Normalization
T (0) = 1 has been imposed. (b) Temperature gradient p = ∂rT (i/n)/λ for discretization n = 20 and
Pe = 0.1. (c) Same convention as (a) for discretization n = 320. (d) Same convention as (b) for
discretization n = 320.

the relative error E =
√

(Ψn − Ψ, Ψn − Ψ)H/(Ψ, Ψ)H built with the H norm (11) for
a discrete eigenvector Ψn to converge to the theoretical one Ψ . Figure 5 shows the
convergence of the relative error for increasing point number n. As expected, 1/n
behavior is observed for both Pe = 0.1 and Pe = 10, but the error is larger in the
latter case.

4.3.2. Two concentric cylinders: r0 = 1/2. In the case where two domains
are present, it is interesting to test the numerical implementation of the flux and
temperature continuity (7) between the two domains in this formulation. Figure 6
shows some eigenfunction profiles at the same Péclet number as those previously
illustrated for the single cylinder case, Pe = 0.1 and Pe = 10. It can be observed
in this figure that the temperature continuity at the domain border r = r0 = 1/2
is excellent even for a modest discretization n = 20. The same observation can be
made on the gradient field. The convergence to the exact solution which can be
visually checked in Figure 6(c) is better than the one previously obtained with the
same parameter in Figure 4(a). This is due to the fact that there is no boundary layer
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Fig. 4. Same conventions as Figure 3 for Pe = 10.

in the latter case when two domains are present. The retrodiffusion of the upstream
eigenvector 1− is possible in the second annular domain Ω2, so that it is not confined
in a small region near the boundary. The resulting temperature gradients are much
lower and do not diverge with the Péclet number. Hence, the maximum temperature
observed for the 1− eigenvector of Figures 6(c) and (d) is indeed localized inside the
second domain at a radial coordinate larger than 1/2. Obviously, the temperature
values associated with this maximum are much lower than in the case of the single
cylinder, due to the smoothing effect associated with permitting retrodiffusion in the
second domain Ω2.

The convergence rate, which can be computed either for the eigenvalues or the
eigenvectors, follows the same scaling as already found for the single cylinder case.
The convergence rate is only a little better (not shown).

5. Conclusion. This paper has presented a new approach for complex three-
dimensional configurations of convection-diffusion in unidirectional flows. We justify
a separation of variable solution approach by defining the eigenvalue/eigenfunction
decomposition of an appropriate mixed operator. The theoretical analysis shows that
the properties of this operator allow a nonsectorial decomposition of the solution in
longitudinally exponentially decaying solutions. This approach permits a full three-
dimensional problem to be numerically restricted to two dimensions. Furthermore, a
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Fig. 5. (a) Relative error for eigenvectors associated with eigenvalues λ+
1 , λ+

2 , and λ−
1 for

Pe = 0.1. The dotted lines corresponds to a −1 slope associated with a ∼ 1/n behavior. (b) Same
convention as (a) for Pe = 10.

naturally efficient numerical discretization has been proposed using finite elements.
The relevance and efficiency of such a discretization has been analyzed in simple
configurations.

Appendix. Reference solutions in axisymmetrical problems. In this
appendix, we give some details about the analytical method used in section 4 for
the analysis of the numerical results. The method is based on a property of the
eigenfunctions called λ-analycity: in the axisymmetrical framework, any eigenfunction
Tλ can be expanded in the form

(22) Tλ(r) =
∑
n∈N

tn(r) λn .

In this description the closure functions {tn}n∈N are independent of the eigenvalue
λ considered and also of the considered boundary condition at r = 1. They can be
computed using a simple iterative process for the computation of the spectrum and
eigenfunctions with a Maple code.

The convergence of the λ-analycity method has been established for general axi-
symmetrical configurations. The proof being the topic of a forthcoming paper, and
for the sake of simplicity, we focus our attention here on the treatment of the Graetz
problem. In this case, the proof for the convergence of the λ-analycity method is
available in [22]. The eigenvalues Tλ are defined as follows, on the interval [0, 1]:

Tλ(0) = 1, ΔcTλ = v(r)λT,

where Δc stands for the cylindrical part of the Laplace operator Δc ≡ 1/r∂r(r∂r).
Eigenfunctions Tλ then read as in (22), where the tn(r) fulfill the recursive scheme

t0(r) = 1 and Δctn = v(r)tn−1(r) , tn(0) = 0 for n ≥ 1.

We point out that this scheme actually has a unique solution thanks to the degeneracy
of the ODE at r = 0.
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Fig. 6. (a) Temperature field T (i/n) i ∈ {1, n} for discretization n = 20 and Pe = 0.1 for
the first two positive eigenvectors 1+ and 2+ and the first negative eigenvector 1−. Normalization
T (0) = 1 has been imposed. (b) Same convection as (a) for for discretization n = 320. (c) Same
convention as (a) Pe = 10. (d) Same convention as (b) for discretization n = 320.

The spectrum, in the case of a Dirichlet boundary condition, is thus defined as

Λ =

{
λ ,

∑
n∈N

tn(1) λn = 0

}
.

It can be approximated using truncations, with an exponential rate of convergence.
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[9] L. Graetz, Uber die Wärmeleitungsfähigkeit von Flüssigkeiten, Ann. Physik (7), 261 (1885),

pp. 337–357.
[10] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 740,

Springer-Verlag, New York, 1981.
[11] C.-D. Ho, H.-M. Yeh, and W.-Y. Yang, Improvement in performance on laminar counterflow

concentric circular heat exchangers with external refluxes, Int. J. Heat Mass Transfer, 45
(2002), pp. 3559–3569.

[12] C. D. Ho, H. M. Yeh, and W. Y. Yang, Double-pass flow heat transfer in a circular conduit
by inserting a concentric tube for improved performance, Chem. Eng. Comm., 192 (2005),
pp. 237–255.

[13] C.-J. Hsu, Theoretical solutions for low Peclet number thermal-entry-region heat transfer in
laminar flow through concentric annuli, Int. J. Heat Mass Transfer, 13 (1970), pp. 1907–
1924.

[14] O. A. Ladyzenskaja and N. N. Ural’ceva, Equations aux dérivées partielles de type ellip-
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