Recently the scaling laws describing the roughness development of fracture
surfaces was proposed to be related to the macroscopic elastic energy released
during crack propagation [Mor00]. On this basis, an energy-based asymptotic
analysis allows to extend the link to the nominal strength of structures. We
show that a Family-Vicsek scaling leads to the classical size effect of linear
elastic fracture mechanics. On the contrary, in the case of an anomalous
scaling, there is a smooth transition from the case of no size effect, for
small structure sizes, to a power law size effect which appears weaker than the
linear elastic fracture mechanics one, in the case of large sizes. This
prediction is confirmed by fracture experiments on wood.Comment: 9 pages, 6 figures, accepted for publication in Physical Review