438 research outputs found
Perturbations in the relaxation mechanism for a large cosmological constant
Recently, a mechanism for relaxing a large cosmological constant (CC) has
been proposed [arxiv:0902.2215], which permits solutions with low Hubble rates
at late times without fine-tuning. The setup is implemented in the LXCDM
framework, and we found a reasonable cosmological background evolution similar
to the LCDM model with a fine-tuned CC. In this work we analyse analytically
the perturbations in this relaxation model, and we show that their evolution is
also similar to the LCDM model, especially in the matter era. Some tracking
properties of the vacuum energy are discussed, too.Comment: 18 pages, LaTeX; discussion improved, accepted by CQ
Searching for the largest bound atoms in space
(abridged) Radio recombination lines (RRLs) at frequencies < 250 MHz
trace the cold, diffuse phase of the ISM. Next generation low frequency
interferometers, such as LOFAR, MWA and the future SKA, with unprecedented
sensitivity, resolution, and large fractional bandwidths, are enabling the
exploration of the extragalactic RRL universe. We observed the radio quasar 3C
190 (z~1.2) with the LOFAR HBA. In reducing this data for spectroscopic
analysis, we have placed special emphasis on bandpass calibration. We devised
cross-correlation techniques to significantly identify the presence of RRLs in
a low frequency spectrum. We demonstrate the utility of this method by applying
it to existing low-frequency spectra of Cassiopeia A and M 82, and to the new
observations of 3C 190. RRLs have been detected in the foreground of 3C 190 at
z = 1.12355 (assuming a carbon origin), owing to the first detection of RRLs
outside of the local universe (first reported in Emig et al. 2019). Towards the
Galactic supernova remnant Cas A, we uncover three new detections: (1)
C-transitions (n = 5) for the first time at low radio
frequencies, (2) H-transitions at 64 MHz with a FWHM of 3.1 km/s, the
most narrow and one of the lowest frequency detections of hydrogen to date, and
(3) C at v = 0 km/s in the frequency range 55-78 MHz for the
first time. Additionally we recover C, C, C, and
C from the -47 km/s and -38 km/s components. In the nearby starburst
galaxy, M 82, we do not find a significant feature. Our current searches for
RRLs in LOFAR observations are limited to narrow (< 100 km/s) features, owing
to the relatively small number of channels available for continuum estimation.
Future strategies making use of larger contiguous frequency coverage would aid
calibration to deeper sensitivities and broader features.Comment: 21 pages, 21 figures, accepted in A&
Observational constraints on Rastall's cosmology
Rastall's theory is a modification of General Relativity, based on the
non-conservation of the stress-energy tensor. The latter is encoded in a
parameter such that restores the usual law. We test Rastall's theory in cosmology, on a flat
Robertson-Walker metric, investigating a two-fluid model and using the type Ia
supernovae Constitution dataset. One of the fluids is pressureless and obeys
the usual conservation law, whereas the other is described by an equation of
state , with constant. The Bayesian analysis of the
Constitution set does not strictly constrain the parameter and prefers
values of close to -1. We then address the evolution of small
perturbations and show that they are dramatically unstable if and
, i.e. General Relativity is the favored configuration. The only
alternative is , for which the dynamics becomes independent from
.Comment: Latex file, 14 pages, 6 figures in eps format. Substantial
modifications performed, main conclusions change
Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution
A new class of FLRW cosmological models with time-evolving fundamental
parameters should emerge naturally from a description of the expansion of the
universe based on the first principles of quantum field theory and string
theory. Within this general paradigm, one expects that both the gravitational
Newton's coupling, G, and the cosmological term, Lambda, should not be strictly
constant but appear rather as smooth functions of the Hubble rate. This
scenario ("running FLRW model") predicts, in a natural way, the existence of
dynamical dark energy without invoking the participation of extraneous scalar
fields. In this paper, we perform a detailed study of these models in the light
of the latest cosmological data, which serves to illustrate the
phenomenological viability of the new dark energy paradigm as a serious
alternative to the traditional scalar field approaches. By performing a joint
likelihood analysis of the recent SNIa data, the CMB shift parameter, and the
BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the
main cosmological parameters. Furthermore, we derive the theoretically
predicted dark-matter halo mass function and the corresponding redshift
distribution of cluster-size halos for the "running" models studied. Despite
the fact that these models closely reproduce the standard LCDM Hubble
expansion, their normalization of the perturbation's power-spectrum varies,
imposing, in many cases, a significantly different cluster-size halo redshift
distribution. This fact indicates that it should be relatively easy to
distinguish between the "running" models and the LCDM cosmology using realistic
future X-ray and Sunyaev-Zeldovich cluster surveys.Comment: Version published in JCAP 08 (2011) 007: 1+41 pages, 6 Figures, 1
Table. Typos corrected. Extended discussion on the computation of the
linearly extrapolated density threshold above which structures collapse in
time-varying vacuum models. One appendix, a few references and one figure
adde
LOFAR tied-array imaging and spectroscopy of solar S bursts
Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes.
Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms.
Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second.
Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere.
Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission
Imaging Jupiter's radiation belts down to 127 MHz with LOFAR
Context. Observing Jupiter's synchrotron emission from the Earth remains
today the sole method to scrutinize the distribution and dynamical behavior of
the ultra energetic electrons magnetically trapped around the planet (because
in-situ particle data are limited in the inner magnetosphere). Aims. We perform
the first resolved and low-frequency imaging of the synchrotron emission with
LOFAR at 127 MHz. The radiation comes from low energy electrons (~1-30 MeV)
which map a broad region of Jupiter's inner magnetosphere. Methods (see article
for complete abstract) Results. The first resolved images of Jupiter's
radiation belts at 127-172 MHz are obtained along with total integrated flux
densities. They are compared with previous observations at higher frequencies
and show a larger extent of the synchrotron emission source (>=4 ). The
asymmetry and the dynamic of east-west emission peaks are measured and the
presence of a hot spot at lambda_III=230 {\deg} 25 {\deg}. Spectral flux
density measurements are on the low side of previous (unresolved) ones,
suggesting a low-frequency turnover and/or time variations of the emission
spectrum. Conclusions. LOFAR is a powerful and flexible planetary imager. The
observations at 127 MHz depict an extended emission up to ~4-5 planetary radii.
The similarities with high frequency results reinforce the conclusion that: i)
the magnetic field morphology primarily shapes the brightness distribution of
the emission and ii) the radiating electrons are likely radially and
latitudinally distributed inside about 2 . Nonetheless, the larger extent
of the brightness combined with the overall lower flux density, yields new
information on Jupiter's electron distribution, that may shed light on the
origin and mode of transport of these particles.Comment: 10 pages, 12 figures, accepted for publication in A&A (27/11/2015) -
abstract edited because of limited character
LOFAR Sparse Image Reconstruction
Context. The LOw Frequency ARray (LOFAR) radio telescope is a giant digital
phased array interferometer with multiple antennas distributed in Europe. It
provides discrete sets of Fourier components of the sky brightness. Recovering
the original brightness distribution with aperture synthesis forms an inverse
problem that can be solved by various deconvolution and minimization methods
Aims. Recent papers have established a clear link between the discrete nature
of radio interferometry measurement and the "compressed sensing" (CS) theory,
which supports sparse reconstruction methods to form an image from the measured
visibilities. Empowered by proximal theory, CS offers a sound framework for
efficient global minimization and sparse data representation using fast
algorithms. Combined with instrumental direction-dependent effects (DDE) in the
scope of a real instrument, we developed and validated a new method based on
this framework Methods. We implemented a sparse reconstruction method in the
standard LOFAR imaging tool and compared the photometric and resolution
performance of this new imager with that of CLEAN-based methods (CLEAN and
MS-CLEAN) with simulated and real LOFAR data Results. We show that i) sparse
reconstruction performs as well as CLEAN in recovering the flux of point
sources; ii) performs much better on extended objects (the root mean square
error is reduced by a factor of up to 10); and iii) provides a solution with an
effective angular resolution 2-3 times better than the CLEAN images.
Conclusions. Sparse recovery gives a correct photometry on high dynamic and
wide-field images and improved realistic structures of extended sources (of
simulated and real LOFAR datasets). This sparse reconstruction method is
compatible with modern interferometric imagers that handle DDE corrections (A-
and W-projections) required for current and future instruments such as LOFAR
and SKAComment: Published in A&A, 19 pages, 9 figure
Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.
Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells
A suggested new bacteriophage genus: “Viunalikevirus”
We suggest a bacteriophage genus, “Viunalikevirus”, as a new genus within the family Myoviridae. To date, this genus includes seven sequenced members: Salmonella phages ViI, SFP10 and ΦSH19; Escherichia phages CBA120 and PhaxI; Shigella phage phiSboM-AG3; and Dickeya phage LIMEstone1. Their shared myovirus morphology, with comparable head sizes and tail dimensions, and genome organization are considered distinguishing features. They appear to have conserved regulatory sequences, a horizontally acquired tRNA set and the probable substitution of an alternate base for thymine in the DNA. A close examination of the tail spike region in the DNA revealed four distinct tail spike proteins, an arrangement which might lead to the umbrella-like structures of the tails visible on electron micrographs. These properties set the suggested genus apart from the recently ratified subfamily Tevenvirinae, although a significant evolutionary relationship can be observed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00705-012-1360-5) contains supplementary material, which is available to authorized users
Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients
Parkinson’s disease (PD) is the neurological disorder showing the greatest rise in prevalence from 1990 to 2016. Despite clinical definition criteria and a tremendous effort to develop objective biomarkers, precise diagnosis of PD is still unavailable at early stage. In recent years, an increasing number of studies have used omic methods to unveil the molecular basis of PD, providing a detailed characterization of potentially pathological alterations in various biological specimens. Metabolomics could provide useful insights to deepen our knowledge of PD aetiopathogenesis, to identify signatures that distinguish groups of patients and uncover responsive biomarkers of PD that may be significant in early detection and in tracking the disease progression and drug treatment efficacy. The present work is the first large metabolomic study based on nuclear magnetic resonance (NMR) with an independent validation cohort aiming at the serum characterization of de novo drug-naive PD patients. Here, NMR is applied to sera from large training and independent validation cohorts of German subjects. Multivariate and univariate approaches are used to infer metabolic differences that characterize the metabolite and the lipoprotein profiles of newly diagnosed de novo drug-naive PD patients also in relation to the biological sex of the subjects in the study, evidencing a more pronounced fingerprint of the pathology in male patients. The presence of a validation cohort allowed us to confirm altered levels of acetone and cholesterol in male PD patients. By comparing the metabolites and lipoproteins levels among de novo drug-naive PD patients, age- and sex-matched healthy controls, and a group of advanced PD patients, we detected several descriptors of stronger oxidative stress
- …