4,689 research outputs found

    Some properties of synchrotron radio and inverse-Compton gamma-ray images of supernova remnants

    Full text link
    The synchrotron radio maps of supernova remnants (SNRs) in uniform interstellar medium and interstellar magnetic field (ISMF) are analyzed, allowing different `sensitivity' of injection efficiency to the shock obliquity. The very-high energy gamma-ray maps due to inverse Compton process are also synthesized. The properties of images in these different wavelength bands are compared, with particular emphasis on the location of the bright limbs in bilateral SNRs. Recent H.E.S.S. observations of SN 1006 show that the radio and IC gamma-ray limbs coincide, and we found that this may happen if: i) injection is isotropic but the variation of the maximum energy of electrons is rather quick to compensate for differences in magnetic field; ii) obliquity dependence of injection (either quasi-parallel or quasi-perpendicular) and the electron maximum energy is strong enough to dominate magnetic field variation. In the latter case, the obliquity dependence of the injection and the maximum energy should not be opposite. We argue that the position of the limbs alone and even their coincidence in radio, X-rays and gamma-rays, as it is discovered by H.E.S.S. in SN 1006, cannot be conclusive about the dependence of the electron injection efficiency, the compression/amplification of ISMF and the electron maximum energy on the obliquity angle.Comment: Accepted for publication in MNRA

    Galactic Cosmic Rays from Supernova Remnants: II Shock Acceleration of Gas and Dust

    Get PDF
    This is the second paper (the first was astro-ph/9704267) of a series analysing the Galactic Cosmic Ray (GCR) composition and origin. In this we present a quantitative model of GCR origin and acceleration based on the acceleration of a mixture of interstellar and/or circumstellar gas and dust by supernova remnant blast waves. We present results from a nonlinear shock model which includes (i) the direct acceleration of interstellar gas-phase ions, (ii) a simplified model for the direct acceleration of weakly charged dust grains to energies of order 100keV/amu simultaneously with the gas ions, (iii) frictional energy losses of the grains colliding with the gas, (iv) sputtering of ions of refractory elements from the accelerated grains and (v) the further shock acceleration of the sputtered ions to cosmic ray energies. The calculated GCR composition and spectra are in good agreement with observations.Comment: to appear in ApJ, 51 pages, LaTeX with AAS macros, 9 postscript figures, also available from ftp://wonka.physics.ncsu.edu/pub/elliso

    Effects of non-uniform interstellar magnetic field on synchrotron X-ray and inverse-Compton gamma-ray morphology of SNRs

    Full text link
    Observations of SNRs in X-ray and gamma-ray bands promise to contribute with important information in our understanding on the nature of galactic cosmic rays. The analysis of SNRs images collected in different energy bands requires the support of theoretical modeling of synchrotron and inverse Compton (IC) emission. We develop a numerical code (REMLIGHT) to synthesize, from MHD simulations, the synchrotron radio, X-ray and IC gamma-ray emission from SNRs expanding in non-uniform interstellar medium (ISM) and/or non-uniform interstellar magnetic field (ISMF). As a first application, the code is used to investigate the effects of non-uniform ISMF on the SNR morphology in the non-thermal X-ray and gamma-ray bands. We perform 3D MHD simulations of a spherical SNR shock expanding through a magnetized ISM with a gradient of ambient magnetic field strength. The model includes an approximate treatment of upstream magnetic field amplification and the effect of shock modification due to back reaction of accelerated cosmic rays. From the simulations, we synthesize the synchrotron radio, X-ray and IC gamma-ray emission with REMLIGHT, making different assumptions about the details of acceleration and injection of relativistic electrons. A gradient of the ambient magnetic field strength induces asymmetric morphologies in radio, X-ray and gamma-ray bands independently from the model of electron injection if the gradient has a component perpendicular to the line-of-sight. The degree of asymmetry of the remnant morphology depends on the details of the electron injection and acceleration and is different in the radio, X-ray, and gamma-ray bands. The non-thermal X-ray morphology is the most sensitive to the gradient, showing the highest degree of asymmetry. The IC gamma-ray emission is weakly sensitive to the non-uniform ISMF, the degree of asymmetry of the SNR morphology being the lowest in this band.Comment: 16 pages, 13 Figures; accepted for publication on A&A. Version with full resolution images can be found at http://www.astropa.unipa.it/~orlando/PREPRINTS/sorlando_15505.pd

    Observational constraints on the modeling of SN1006

    Full text link
    Experimental spectra and images of the supernova remnant SN1006 have been reported for radio, X-ray and TeV gamma-ray bands. Several comparisons between models and observations have been discussed in the literature, showing that the broad-band spectrum from the whole remnant as well as a sharpest radial profile of the X-ray brightness can be both fitted by adopting a model of SN1006 which strongly depends on the non-linear effects of the accelerated cosmic rays; these models predict post-shock magnetic field (MF) strengths of the order of 150 micro G. Here we present a new way to compare models and observations, in order to put constraints on the physical parameters and mechanisms governing the remnant. In particular, we show that a simple model based on the classic MHD and cosmic rays acceleration theories allows us to investigate the spatially distributed characteristics of SN1006 and to put observational constraints on the kinetics and MF. Our method includes modelling and comparison of the azimuthal and radial profiles of the surface brightness in radio, hard X-rays and TeV gamma-rays as well as the azimuthal variations of the electron maximum energy. In addition, this simple model also provides good fits to the radio-to-gamma-ray spectrum of SN1006. We find that our best-fit model predicts an effective MF strength inside SN1006 of 32 micro G, in good agreement with the `leptonic' model suggested by the HESS Collaboration (2010). Finally, some difficulties in both the `classic' and the non-linear models are discussed. A number of evidences about non-uniformity of MF around SN1006 are noted.Comment: 15 pages, 13 figures, accepted for publication on MNRA

    Production and isolation of 72As from proton irradiation of enriched 72GeO2 for the development of targeted PET/MRI agents

    Get PDF
    Introduction Two current major research topics in nuclear medicine are in the development of long-lived positron-emitting nuclides for imaging tracers with long biological half-lives and in theranostics, imaging nuclides which have a chemically analogous therapy isotope. As shown in TABLE 1, the radioisotopes of arsenic (As) are well suited for both of these tasks with several imaging and therapy isotopes of a variety of biologically relevant half-lives accessible through the use of small medical cyclotrons. The five naturally abundant isotopes of germanium are both a boon and challenge for the medical nuclear chemist. They are beneficial in that they facilitate a wide array of producible radioarsenic isotopes. They are a challenge as monoisotopic radioarsenic production requires isotopically-enriched targets that are expensive and of limited availability. This makes it highly desirable that the germanium target material is reclaimed from arsenic isolation chemistry. One major factor which has limited the development of radioarsenic has been difficulties in its incorporation into biologically relevant targeting vectors. Previous studies have labeled antibodies and polymers through covalent bonding of arsenite (As(III)) with the sulfydryl group1,2,3. Recent work in our group has shown the facile synthesis and utility of superparamagnetic iron oxide nanoparticle- (SPION-)bound radioarsenic as a dual modality positron emission tomography (PET)/magnetic resonance imaging (MRI) agent4. Presently, we have built upon previous studies producing, isolating, and labeling untargeted SPION with radioarsenic4,5. We have incorp-rated the use of isotopically-enriched 72GeO2 for the production of radioisotopically pure 72As. The bulk of the 72GeO2 target material was re-claimed from the arsenic isolation chemical procedure for reuse in future irradiations. The 72As was used for ongoing development toward the synthesis of targeted, As-SPION-based, dual-modality PET/MRI agents. Material and Methods Targets of ~100 mg of isotopically-enriched 72GeO2 (96.6% 72Ge, 2.86% 73Ge, 0.35% 70Ge, 0.2% 74Ge, 0.01% 76Ge, Isoflex USA) were pressed into a niobium beam stop at 225 MPa, covered with a 25 ”m HAVAR containment foil, attached to a water-cooling target port, and irradiated with 3 ”A of 16.1 MeV protons for 2–3 hours using a GE PETtrace cyclotron. After irradiation, the target and beam stop were assembled into a PTFE dissolution apparatus, where the 72GeO2 target material was dissolved with the addition of 2 mL of 4 M NaOH and subsequent stirring. After dissolution was completed, the clear, colorless solution was transferred to a fritted glass column and the bulk 72GeO2 was reprecipitated by neutralizing the solution with the addition of 630 ”L [HCl]conc, filtered, and rinsed with 1 mL [HCl]conc. To the combined 72As-containing filtrates, 100 ”L 30% H2O2 was added to ensure that 72As was in the nonvolatile As(V) oxidation state. The ~3 mL solution was then evaporated at 115 ˚C while the vessel was purged with argon, followed by a second addition of 100 ”L H2O2 after the volume was reduced to 1 mL. When the filtrate volume was ~0.3 mL, the vessel was removed from heat, allowed to cool with argon flow, and the arsenic reconstituted in 1 mL [HCl]conc and loaded onto a 1.5 mL bed volume Bio-Rad AG 1×8, 200–400 mesh anion exchange column preconditioned with 10 M HCl. The radioarsenic was eluted in 10 M HCl in the next ~10 mL, with 90% of the activity eluting in a 4 mL fraction. The column was then eluted with 5 mL 1 M HCl. The 72As-rich 10 M HCl fraction was reduced to As(III) with the addition of ~100 mg CuCl, and heating to 60 ˚C for 1 hour. The resulting AsCl3 was then extracted twice into 4 mL cyclohexane, which were combined and back extracted into 500 ”L of water as As(OH)3. This solution of 72As in H2O was then used directly to label SPION and for subsequent experiments conjugating 72As-SPION with TRC105, an angiogenesis-marking monoclonal antibody (MAb) targeting endoglin/CD105. Several methods were initially attempted involving directly conjugating the surface-modified SPION to the MAb through a polyethylene glycol (PEG) linker. More recent studies have investigated the radioarsenic labeling of SPION encapsulated in hollow mesoporous silica nanoparticles (SPION@HMSN) and its subsequent conjugation to TRC105. Results and Conclusion Irradiation of pressed, isotopically-enriched 72GeO2 resulted in a production yield for 72As of 17 ± 2 mCi/(”A·hr·g) and for 71As of 0.37 ± 0.04 mCi/(”A·hr·g), which are 64 % and 33 %, of those predicted from literature6, respectively. However, these production yields are in agreement with those scaled from observed production yields using analagous natGeO2 targets. The end-of-bombardment 72As radionuclidic purity can be improved by minimizing the 72Ge(p,2n)71As reaction by degrading the beam energy. A 125 ”m Nb containment foil would degrade impinging protons to 14.1 MeV and is predicted to reduce 71As yield by a factor of three, while only reducing 72As yield by 1 %6, improving end-of-bombardment radionuclidic purity from 98 % to greater than 99 %. Overall decay-corrected radiochemical yield of the 72As isolation procedure from 72GeO2 were 51 ± 2 % (n = 3) in agreement with those observed with natGeO2 57 ± 7 % (n = 14). The beam current was limited to 3 ”A as higher cur-rents 4–5 ”A exhibited inconsistent dissolution and reprecipitation steps, resulting in an overall yield of 44 ± 21 % (n = 6). Dissolution time also played an important role in overall yield with at least one hour necessary to minimize losses in these first two steps. The separation procedure effectively removed all radiochemical contaminants and resulted in 72As(OH)3 isolated in a small volume, pH~4.5 water solution. Over the course of minutes to hours after back extraction, rapid auto-oxidation to 72AsO4H3 was observed. The bulk 72GeO2 target material, which was reclaimed from the isolation procedure, is being collected for future use. The synthesis of a targeted PET/MRI agent based on the functionalization of 72As-SPION has proved to be a difficult task. Experiments conjugating 72As-SPION to TRC105 through a PEG linker were unsuccessful, despite the investigation of a variety bioconjugation procedures. Current work is investigating the use of SPION@HMSN, which have a similar affinity for 72As as unencapsulated SPION. This new class of 72As-labeled SPION@HMSN has a hollow cavity for potential anti-cancer drug loading, as well as the mesoporous silica surface, which may facilitate the efficient conjugation of TRC105 using a well-developed bioconjugation technique. In summary, radioarsenic holds potential in the field of diagnostic and therapeutic nuclear medicine. However, this potential remains locked behind challenges related to its production and useful in vivo targeting. The present work strives to address several of these challenges through the use of enriched 72GeO2 target material, a chemical isolation procedure that reclaims the bulk of the target material, and the investigation of new targeted nanoparticle-based PET/MRI agents

    Cardiovascular disease in a cohort exposed to the 1940-45 Channel Islands occupation

    Get PDF
    BACKGROUND To clarify the nature of the relationship between food deprivation/undernutrition during pre- and postnatal development and cardiovascular disease (CVD) in later life, this study examined the relationship between birth weight (as a marker of prenatal nutrition) and the incidence of hospital admissions for CVD from 1997–2005 amongst 873 Guernsey islanders (born in 1923–1937), 225 of whom had been exposed to food deprivation as children, adolescents or young adults (i.e. postnatal undernutrition) during the 1940–45 German occupation of the Channel Islands, and 648 of whom had left or been evacuated from the islands before the occupation began. METHODS Three sets of Cox regression models were used to investigate (A) the relationship between birth weight and CVD, (B) the relationship between postnatal exposure to the occupation and CVD and (C) any interaction between birth weight, postnatal exposure to the occupation and CVD. These models also tested for any interactions between birth weight and sex, and postnatal exposure to the occupation and parish of residence at birth (as a marker of parish residence during the occupation and related variation in the severity of food deprivation). RESULTS The first set of models (A) found no relationship between birth weight and CVD even after adjustment for potential confounders (hazard ratio (HR) per kg increase in birth weight: 1.12; 95% confidence intervals (CI): 0.70 – 1.78), and there was no significant interaction between birth weight and sex (p = 0.60). The second set of models (B) found a significant relationship between postnatal exposure to the occupation and CVD after adjustment for potential confounders (HR for exposed vs. unexposed group: 2.52; 95% CI: 1.54 – 4.13), as well as a significant interaction between postnatal exposure to the occupation and parish of residence at birth (p = 0.01), such that those born in urban parishes (where food deprivation was worst) had a greater HR for CVD than those born in rural parishes. The third model (C) found no interaction between birth weight and exposure to the occupation (p = 0.43). CONCLUSION These findings suggest that the levels of postnatal undernutrition experienced by children, adolescents and young adults exposed to food deprivation during the 1940–45 occupation of the Channel Islands were a more important determinant of CVD in later life than the levels of prenatal undernutrition experienced in utero prior to the occupatio

    On the Origin of Asymmetries in Bilateral Supernova Remnants

    Get PDF
    AIMS: We investigate whether the morphology of bilateral supernova remnants (BSNRs) observed in the radio band is determined mainly either by a non-uniform interstellar medium (ISM) or by a non-uniform ambient magnetic field. METHODS: We perform 3-D MHD simulations of a spherical SNR shock propagating through a magnetized ISM. Two cases of shock propagation are considered: 1) through a gradient of ambient density with a uniform ambient magnetic field; 2) through a homogeneous medium with a gradient of ambient magnetic field strength. From the simulations, we synthesize the synchrotron radio emission, making different assumptions about the details of acceleration and injection of relativistic electrons. RESULTS: We find that asymmetric BSNRs are produced if the line-of-sight is not aligned with the gradient of ambient plasma density or with the gradient of ambient magnetic field strength. We derive useful parameters to quantify the degree of asymmetry of the remnants that may provide a powerful diagnostic of the microphysics of strong shock waves through the comparison between models and observations. CONCLUSIONS: BSNRs with two radio limbs of different brightness can be explained if a gradient of ambient density or, most likely, of ambient magnetic field strength is perpendicular to the radio limbs. BSNRs with converging similar radio arcs can be explained if the gradient runs between the two arcs.Comment: 14 pages, 8 Figures; paper accepted for publication in A&A; the paper with high-resolution figures can be downloaded at http://www.astropa.unipa.it/~orlando/PAPERS/sorlando_6045.pd

    Spatial Resolution of Double-Sided Silicon Microstrip Detectors for the PAMELA Apparatus

    Full text link
    The PAMELA apparatus has been assembled and it is ready to be launched in a satellite mission to study mainly the antiparticle component of cosmic rays. In this paper the performances obtained for the silicon microstrip detectors used in the magnetic spectrometer are presented. This subdetector reconstructs the curvature of a charged particle in the magnetic field produced by a permanent magnet and consequently determines momentum and charge sign, thanks to a very good accuracy in the position measurements (better than 3 um in the bending coordinate). A complete simulation of the silicon microstrip detectors has been developed in order to investigate in great detail the sensor's characteristics. Simulated events have been then compared with data gathered from minimum ionizing particle (MIP) beams during the last years in order to tune free parameters of the simulation. Finally some either widely used or original position finding algorithms, designed for such kind of detectors, have been applied to events with different incidence angles. As a result of the analysis, a method of impact point reconstruction can be chosen, depending on both the particle's incidence angle and the cluster multiplicity, so as to maximize the capability of the spectrometer in antiparticle tagging.Comment: 28 pages, 18 figures, submitted to Nuclear Instruments and Methods in Physics Research

    Rare decay Z --> neutrino antineutrino photon photon via quartic gauge boson couplings

    Full text link
    We present a detailed calculation of the rare decay Z --> neutrino antineutrino photon photon via the quartic neutral gauge boson coupling Z-Z-photon-photon in the framework of the effective Lagrangian approach. The current experimental bound on this decay mode is then used to constrain the coefficients of this coupling. It is found that the bounds obtained in this way, of the order of 10−110^{-1}, are weaker than the ones obtained from the analysis of triple-boson production at LEP-2Comment: 5 pages, 2 figures, to appear in Physical Review D Brief Report

    Simulating Electron Transport and Synchrotron Emission in Radio Galaxies: Shock Acceleration and Synchrotron Aging in Axis-Symmetric Flows

    Get PDF
    We introduce a simple and economical but effective method for including relativistic electron transport in multi-dimensional simulations of radio galaxies. The method is designed to follow explicitly diffusive acceleration at shocks, and, in smooth flows 2nd order Fermi acceleration plus adiabatic and synchrotron cooling. We are able to follow both the spatial and energy distributions of the electrons, so that direct synchrotron emission properties can be modeled in time-dependent flows for the first time. Here we present first results in the form of some axis-symmetric MHD simulations of Mach 20 light jet flows. These show clearly the importance of nonsteady terminal shocks that develop in such flows even when the jet inflow is steady. As a result of this and other consequences of the fundamentally driven character of jets, we find complex patterns of emissivities and synchrotron spectra, including steep spectral gradients in hot spots, islands of distinct spectra electrons within the lobes and spectral gradients coming from the dynamical histories of a given flow element rather than from synchrotron aging of the embedded electrons. In addition, spectral aging in the lobes tends to proceed more slowly than one would estimate from regions of high emissivity.Comment: 30 pages of Latex generated text plus 7 figures in gif format. Accepted for publication in the Astrophysical Journal. High resolution postscript figures available through anonymous ftp at ftp://ftp.msi.umn.edu/pub/users/twj/RGje
    • 

    corecore