119 research outputs found
Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel
The mechanical behavior of multiphase steels is governed by the microscopic strain and stress partitioning behavior among microstructural constituents [1-3]. However, due to limitations in the characterization of the partitioning that takes place at the submicron scale, microstructure optimization of such alloys is typically based on evaluating the averaged response, referring to, for example, macroscopic stress–strain curves. Here, a coupled experimental–numerical methodology is presented and discussed to strengthen the integrated understanding of the microstructure and mechanical properties of complex alloys, enabling joint analyses of deformation-induced evolution of the microstructure, and the strain and stress distribution therein, down to submicron resolution. From the experiments, deformation-induced evolution of (i) the microstructure, and (ii) the local strain distribution are concurrently captured, employing in situ secondary electron imaging and electron backscatter diffraction (EBSD) (for the former), and microscopic-digital image correlation (for the latter) [3,4]. From the simulations, local strain as well as stress distributions are revealed, through full-field crystal plasticity (CP) simulations conducted with the advanced DAMASK spectral solver suitable for heterogeneous materials [5,6]. The simulated model is designed directly from the initial EBSD measurements, and the phase properties are obtained by additional inverse CP simulations of nanoindentation experiments carried out on the
original microstructure. The experiments and simulations demonstrate good correlation in the proof-of-principle study conducted here on a martensite–ferrite dual-phase steel, and deviations are discussed in terms of opportunities and limitations of the techniques involved. C.C. Tasan et al. Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations, International Journal of Plasticity,63,198-210,2014 C.C. Tasan et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design, Annual Review of Materials Research,45,391-431,2015 D. Yan et al. High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels,Acta Materialia,96,399-409,2015 C.C. Tasan et al. Integrated experimental–simulation analysis of stress and strain partitioning in multiphase alloys,Acta Materialia,81,,386-400,2014 F. Roters, et al. 2012, DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver, in Procedia IUTAM, Vol. III, pp. 3–10, Elsevier, Amsterdam. https://damask.mpie.d
The Laegeren site: an augmented forest laboratory combining 3-D reconstruction and radiative transfer models for trait-based assessment of functional diversity
Given the increased pressure on forests and their diversity in the context of global change, new ways of monitoring diversity are needed. Remote sensing has the potential to inform essential biodiversity variables on the global scale, but validation of data and products, particularly in remote areas, is difficult. We show how radiative transfer (RT) models, parameterized with a detailed 3-D forest reconstruction based on laser scanning, can be used to upscale leaf-level information to canopy scale. The simulation approach is compared with actual remote sensing data, showing very good agreement in both the spectral and spatial domains. In addition, we compute a set of physiological and morphological traits from airborne imaging spectroscopy and laser scanning data and show how these traits can be used to estimate the functional richness of a forest at regional scale. The presented RT modeling framework has the potential to prototype and validate future spaceborne observation concepts aimed at informing variables of biodiversity, while the trait-based mapping of diversity could augment in situ networks of diversity, providing effective spatiotemporal gap filling for a comprehensive assessment of changes to diversity
International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning
Canopy structure plays an essential role in biophysical activities in forest environments. However, quantitative descriptions of a 3-D canopy structure are extremely difficult because of the complexity and heterogeneity of forest systems. Airborne laser scanning (ALS) provides an opportunity to automatically measure a 3-D canopy structure in large areas. Compared with other point cloud technologies such as the image-based Structure from Motion, the power of ALS lies in its ability to penetrate canopies and depict subordinate trees. However, such capabilities have been poorly explored so far. In this paper, the potential of ALS-based approaches in depicting a 3-D canopy structure is explored in detail through an international benchmarking of five recently developed ALS-based individual tree detection (ITD) methods. For the first time, the results of the ITD methods are evaluated for each of four crown classes, i.e., dominant, codominant, intermediate, and suppressed trees, which provides insight toward understanding the current status of depicting a 3-D canopy structure using ITD methods, particularly with respect to their performances, potential, and challenges. This benchmarking study revealed that the canopy structure plays a considerable role in the detection accuracy of ITD methods, and its influence is even greater than that of the tree species as well as the species composition in a stand. The study also reveals the importance of utilizing the point cloud data for the detection of intermediate and suppressed trees. Different from what has been reported in previous studies, point density was found to be a highly influential factor in the performance of the methods that use point cloud data. Greater efforts should be invested in the point-based or hybrid ITD approaches to model the 3-D canopy structure and to further explore the potential of high-density and multiwavelengths ALS data
Developing a dual-wavelength full-waveform terrestrial laser scanner to characterise forest canopy structure
The development of a dual-wavelength full-waveform terrestrial laser scanner to measure the three-dimensional structure of forest canopies is described, and field measurements used to evaluate and test the instrument measurement characteristics. The Salford Advanced Laser Canopy Analyser (SALCA) measures the full-waveform of backscattered radiation at two laser wavelengths, one in the near-infrared (1063 nm) and one in the shortwave infrared (1545 nm). The instrument is field-portable and measures up to nine million waveforms, at the two wavelengths, across a complete hemisphere above the instrument. SALCA was purpose-built to measure structural characteristics of forest canopies and this paper reports the first results of field-based data collection using the instrument. Characteristics of the waveforms, and waveform data processing are outlined, applications of dual wavelength measurements are evaluated, and field deployment of the instrument at a forest test site described. Preliminary instrument calibration results are presented and challenges in extracting useful information on forest structure are highlighted. Full-waveform multiple-wavelength terrestrial laser scanners are likely to provide more detailed and more accurate forest structural measurement in the future. This research demonstrates how SALCA provides a key step to develop, test and apply this new technology in a range of forest-related problems
Testing the application of terrestrial laser scanning to measure forest canopy gap fraction
Terrestrial laser scanners (TLS) have the potential to revolutionise measurement of the three-dimensional structure of vegetation canopies for applications in ecology, hydrology and climate change. This potential has been the subject of recent research that has attempted to measure forest biophysical variables from TLS data, and make comparisons with two-dimensional data from hemispherical photography. This research presents a systematic comparison between forest canopy gap fraction estimates derived from TLS measurements and hemispherical photography. The TLS datasets used in the research were obtained between April 2008 and March 2009 at Delamere Forest, Cheshire, UK. The analysis of canopy gap fraction estimates derived from TLS data highlighted the repeatability and consistency of the measurements in comparison with those from coincident hemispherical photographs. The comparison also showed that estimates computed considering only the number of hits and misses registered in the TLS datasets were consistently lower than those estimated from hemispherical photographs. To examine this difference, the potential information available in the intensity values recorded by TLS was investigated and a new method developed to estimate canopy gap fraction proposed. The new approach produced gap fractions closer to those estimated from hemispherical photography, but the research also highlighted the limitations of single return TLS data for this application
Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot
Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic Region (SWAFR). However, poor characterization of GOs limits the capacity of conservation planning for refugia under climate change. A novel means for the rapid identification of potential refugia is presented, based on the assessment of local-scale environment and vegetation structure in a wider region. This approach was tested on GOs across the SWAFR. Airborne discrete return Light Detection And Ranging (LiDAR) data and Red Green and Blue (RGB) imagery were acquired. Vertical vegetation profiles were used to derive 54 structural classes. Structural vegetation types were described in three areas for supervised classification of a further 13 GOs across the region.Habitat descriptions based on 494 vegetation plots on and around these GOs were used to quantify relationships between environmental variables, ground cover and canopy height. The vegetation surrounding GOs is strongly related to structural vegetation types (Kappa = 0.8) and to its spatial context. Water gaining sites around GOs are characterized by taller and denser vegetation in all areas. The strong relationship between rainfall, soil-depth, and vegetation structure (R2 of 0.8–0.9) allowed comparisons of vegetation structure between current and future climate. Significant shifts in vegetation structural types were predicted and mapped for future climates. Water gaining areas below granite outcrops were identified as important putative refugia. A reduction in rainfall may be offset by the occurrence of deeper soil elsewhere on the outcrop. However, climate change interactions with fire and water table declines may render our conclusions conservative. The LiDAR-based mapping approach presented enables the integration of site-based biotic assessment with structural vegetation types for the rapid delineation and prioritization of key refugia
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0\u20135 and 5\u201315 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10\ub0C (mean = 3.0 \ub1 2.1\ub0C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 \ub1 2.3\ub0C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler ( 120.7 \ub1 2.3\ub0C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
- …