404 research outputs found
Sum over topologies and double-scaling limit in 2D Lorentzian quantum gravity
We construct a combined non-perturbative path integral over geometries and
topologies for two-dimensional Lorentzian quantum gravity. The Lorentzian
structure is used in an essential way to exclude geometries with unacceptably
large causality violations. The remaining sum can be performed analytically and
possesses a unique and well-defined double-scaling limit, a property which has
eluded similar models of Euclidean quantum gravity in the past.Comment: 9 pages, 3 Postscript figures; added comments on strip versus bulk
partition functio
On the diffeomorphism commutators of lattice quantum gravity
We show that the algebra of discretized spatial diffeomorphism constraints in
Hamiltonian lattice quantum gravity closes without anomalies in the limit of
small lattice spacing. The result holds for arbitrary factor-ordering and for a
variety of different discretizations of the continuum constraints, and thus
generalizes an earlier calculation by Renteln.Comment: 16 pages, Te
(2+1)-Dimensional Quantum Gravity as the Continuum Limit of Causal Dynamical Triangulations
We perform a non-perturbative sum over geometries in a (2+1)-dimensional
quantum gravity model given in terms of Causal Dynamical Triangulations.
Inspired by the concept of triangulations of product type introduced
previously, we impose an additional notion of order on the discrete, causal
geometries. This simplifies the combinatorial problem of counting geometries
just enough to enable us to calculate the transfer matrix between boundary
states labelled by the area of the spatial universe, as well as the
corresponding quantum Hamiltonian of the continuum theory. This is the first
time in dimension larger than two that a Hamiltonian has been derived from such
a model by mainly analytical means, and opens the way for a better
understanding of scaling and renormalization issues.Comment: 38 pages, 13 figure
Counting a black hole in Lorentzian product triangulations
We take a step toward a nonperturbative gravitational path integral for
black-hole geometries by deriving an expression for the expansion rate of null
geodesic congruences in the approach of causal dynamical triangulations. We
propose to use the integrated expansion rate in building a quantum horizon
finder in the sum over spacetime geometries. It takes the form of a counting
formula for various types of discrete building blocks which differ in how they
focus and defocus light rays. In the course of the derivation, we introduce the
concept of a Lorentzian dynamical triangulation of product type, whose
applicability goes beyond that of describing black-hole configurations.Comment: 42 pages, 11 figure
Gauge Group and Topology Change
The purpose of this study is to examine the effect of topology change in the
initial universe. In this study, the concept of -cobordism is introduced to
argue about the topology change of the manifold on which a transformation group
acts. This -manifold has a fiber bundle structure if the group action is
free and is related to the spacetime in Kaluza-Klein theory or
Einstein-Yang-Mills system. Our results revealed that fundamental processes of
compactification in -manifolds. In these processes, the initial high
symmetry and multidimensional universe changes to present universe by the
mechanism which lowers the dimensions and symmetries.Comment: 8 page
Bounding bubbles: the vertex representation of 3d Group Field Theory and the suppression of pseudo-manifolds
Based on recent work on simplicial diffeomorphisms in colored group field
theories, we develop a representation of the colored Boulatov model, in which
the GFT fields depend on variables associated to vertices of the associated
simplicial complex, as opposed to edges. On top of simplifying the action of
diffeomorphisms, the main advantage of this representation is that the GFT
Feynman graphs have a different stranded structure, which allows a direct
identification of subgraphs associated to bubbles, and their evaluation is
simplified drastically. As a first important application of this formulation,
we derive new scaling bounds for the regularized amplitudes, organized in terms
of the genera of the bubbles, and show how the pseudo-manifolds configurations
appearing in the perturbative expansion are suppressed as compared to
manifolds. Moreover, these bounds are proved to be optimal.Comment: 28 pages, 17 figures. Few typos fixed. Minor corrections in figure 6
and theorem
Random walks on combs
We develop techniques to obtain rigorous bounds on the behaviour of random
walks on combs. Using these bounds we calculate exactly the spectral dimension
of random combs with infinite teeth at random positions or teeth with random
but finite length. We also calculate exactly the spectral dimension of some
fixed non-translationally invariant combs. We relate the spectral dimension to
the critical exponent of the mass of the two-point function for random walks on
random combs, and compute mean displacements as a function of walk duration. We
prove that the mean first passage time is generally infinite for combs with
anomalous spectral dimension.Comment: 42 pages, 4 figure
Area spectrum in Lorentz covariant loop gravity
We use the manifestly Lorentz covariant canonical formalism to evaluate
eigenvalues of the area operator acting on Wilson lines. To this end we modify
the standard definition of the loop states to make it applicable to the present
case of non-commutative connections. The area operator is diagonalized by using
the usual shift ambiguity in definition of the connection. The eigenvalues are
then expressed through quadratic Casimir operators. No dependence on the
Immirzi parameter appears.Comment: 12 pages, RevTEX; improved layout, typos corrected, references added;
changes in the discussion in sec. IIIB and
The moduli space of isometry classes of globally hyperbolic spacetimes
This is the last article in a series of three initiated by the second author.
We elaborate on the concepts and theorems constructed in the previous articles.
In particular, we prove that the GH and the GGH uniformities previously
introduced on the moduli space of isometry classes of globally hyperbolic
spacetimes are different, but the Cauchy sequences which give rise to
well-defined limit spaces coincide. We then examine properties of the strong
metric introduced earlier on each spacetime, and answer some questions
concerning causality of limit spaces. Progress is made towards a general
definition of causality, and it is proven that the GGH limit of a Cauchy
sequence of , path metric Lorentz spaces is again a
, path metric Lorentz space. Finally, we give a
necessary and sufficient condition, similar to the one of Gromov for the
Riemannian case, for a class of Lorentz spaces to be precompact.Comment: 29 pages, 9 figures, submitted to Class. Quant. Gra
A Categorical Equivalence between Generalized Holonomy Maps on a Connected Manifold and Principal Connections on Bundles over that Manifold
A classic result in the foundations of Yang-Mills theory, due to J. W.
Barrett ["Holonomy and Path Structures in General Relativity and Yang-Mills
Theory." Int. J. Th. Phys. 30(9), (1991)], establishes that given a
"generalized" holonomy map from the space of piece-wise smooth, closed curves
based at some point of a manifold to a Lie group, there exists a principal
bundle with that group as structure group and a principal connection on that
bundle such that the holonomy map corresponds to the holonomies of that
connection. Barrett also provided one sense in which this "recovery theorem"
yields a unique bundle, up to isomorphism. Here we show that something stronger
is true: with an appropriate definition of isomorphism between generalized
holonomy maps, there is an equivalence of categories between the category whose
objects are generalized holonomy maps on a smooth, connected manifold and whose
arrows are holonomy isomorphisms, and the category whose objects are principal
connections on principal bundles over a smooth, connected manifold. This result
clarifies, and somewhat improves upon, the sense of "unique recovery" in
Barrett's theorems; it also makes precise a sense in which there is no loss of
structure involved in moving from a principal bundle formulation of Yang-Mills
theory to a holonomy, or "loop", formulation.Comment: 20 page
- …