We perform a non-perturbative sum over geometries in a (2+1)-dimensional
quantum gravity model given in terms of Causal Dynamical Triangulations.
Inspired by the concept of triangulations of product type introduced
previously, we impose an additional notion of order on the discrete, causal
geometries. This simplifies the combinatorial problem of counting geometries
just enough to enable us to calculate the transfer matrix between boundary
states labelled by the area of the spatial universe, as well as the
corresponding quantum Hamiltonian of the continuum theory. This is the first
time in dimension larger than two that a Hamiltonian has been derived from such
a model by mainly analytical means, and opens the way for a better
understanding of scaling and renormalization issues.Comment: 38 pages, 13 figure