A classic result in the foundations of Yang-Mills theory, due to J. W.
Barrett ["Holonomy and Path Structures in General Relativity and Yang-Mills
Theory." Int. J. Th. Phys. 30(9), (1991)], establishes that given a
"generalized" holonomy map from the space of piece-wise smooth, closed curves
based at some point of a manifold to a Lie group, there exists a principal
bundle with that group as structure group and a principal connection on that
bundle such that the holonomy map corresponds to the holonomies of that
connection. Barrett also provided one sense in which this "recovery theorem"
yields a unique bundle, up to isomorphism. Here we show that something stronger
is true: with an appropriate definition of isomorphism between generalized
holonomy maps, there is an equivalence of categories between the category whose
objects are generalized holonomy maps on a smooth, connected manifold and whose
arrows are holonomy isomorphisms, and the category whose objects are principal
connections on principal bundles over a smooth, connected manifold. This result
clarifies, and somewhat improves upon, the sense of "unique recovery" in
Barrett's theorems; it also makes precise a sense in which there is no loss of
structure involved in moving from a principal bundle formulation of Yang-Mills
theory to a holonomy, or "loop", formulation.Comment: 20 page