274 research outputs found

    Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wax ester synthases (WSs) can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel.</p> <p>Results</p> <p>Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in <it>Saccharomyces cerevisiae</it>. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters) production in <it>S. cerevisiae</it>. All investigated WSs, from <it>Acinetobacter baylyi </it>ADP1, <it>Marinobacter hydrocarbonoclasticus </it>DSM 8798, <it>Rhodococcus opacus </it>PD630, <it>Mus musculus </it>C57BL/6 and <it>Psychrobacter arcticus </it>273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from <it>M. hydrocarbonoclasticus </it>DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production.</p> <p>Conclusions</p> <p>Five WSs from different species were functionally expressed and their substrate preference characterized in <it>S. cerevisiae</it>, thus constructing cell factories for the production of specific kinds of wax ester. WS from <it>M. hydrocarbonoclasticus </it>showed the highest preference for ethanol compared to the other WSs, and could permit the engineered <it>S. cerevisiae </it>to produce biodiesel.</p

    The South Dakota Fuel Ethanol Industry

    Get PDF

    A temperature-sensitive Mycobacterium smegmatis glgE mutation leads to a loss of GlgE enzyme activity and thermostability and the accumulation of α-maltose-1-phosphate

    Get PDF
    Background: The bacterial GlgE pathway is the third known route to glycogen and is the only one present in mycobacteria. It contributes to the virulence of Mycobacterium tuberculosis. The involvement of GlgE in glycogen biosynthesis was discovered twenty years ago when the phenotype of a temperature-sensitive Mycobacterium smegmatis mutation was rescued by the glgE gene. The evidence at the time suggested glgE coded for a glucanase responsible for the hydrolysis of glycogen, in stark contrast with recent evidence showing GlgE to be a polymerase responsible for its biosynthesis. Methods: We reconstructed and examined the temperature-sensitive mutant and characterised the mutated GlgE enzyme. Results: The mutant strain accumulated the substrate for GlgE, α-maltose-1-phosphate, at the non-permissive temperature. The glycogen assay used in the original study was shown to give a false positive result with α-maltose-1-phosphate. The accumulation of α-maltose-1-phosphate was due to the lowering of the kcat of GlgE as well as a loss of stability 42 °C. The reported rescue of the phenotype by GarA could potentially involve an interaction with GlgE, but none was detected. Conclusions: We have been able to reconcile apparently contradictory observations and shed light on the basis for the phenotype of the temperature-sensitive mutation. General significance: This study highlights how the lowering of flux through the GlgE pathway can slow the growth mycobacteria

    Whole genome sequencing identifies a duplicated region encompassing Xq13.2q13.3 in a large Iranian family with intellectual disability

    No full text
    Background The X chromosome has historically been one of the most thoroughly investigated chromosomes regarding intellectual disability (ID), whose etiology is attributed to many factors including copy number variations (CNVs). Duplications of the long arm of the X chromosome have been reported in patients with ID, short stature, facial anomalies, and in many cases hypoplastic genitalia and/or behavioral abnormalities. Methods Here, we report on a large Iranian family with X‐linked ID caused by a duplication on the X chromosome identified by whole genome sequencing in combination with linkage analysis. Results Seven affected males in different branches of the family presented with ID, short stature, seizures, facial anomalies, behavioral abnormalities (aggressiveness, self‐injury, anxiety, impaired social interactions, and shyness), speech impairment, and micropenis. The duplication of the region Xq13.2q13.3, which is ~1.8 Mb in size, includes seven protein‐coding OMIM genes. Three of these genes, namely SLC16A2, RLIM, and NEXMIF, if impaired, can lead to syndromes presenting with ID. Of note, this duplicated region was located within a linkage interval with a LOD score >3. Conclusion Our report indicates that CNVs should be considered in multi‐affected families where no candidate gene defect has been identified in sequencing data analysis

    Heterologous expression of a thermophilic diacylglycerol acyltransferase triggers triglyceride accumulation in Escherichia coli

    Get PDF
    Triglycerides (TAGs), the major storage molecules of metabolic energy and source of fatty acids, are produced as single cell oil by some oleogenic microorganisms. However, these microorganisms require strict culture conditions, show low carbon source flexibilities, lack efficient genetic modification tools and in some cases pose safety concerns. TAGs have essential applications such as behaving as a source for added-value fatty acids or giving rise to the production of biodiesel. Hence, new alternative methods are urgently required for obtaining these oils. In this work we describe TAG accumulation in the industrially appropriate microorganism Escherichia coli expressing the heterologous enzyme tDGAT, a wax ester synthase/triacylglycerol:acylCoA acyltranferase (WS/DGAT). With this purpose, we introduce a codon-optimized gene from the thermophilic actinomycete Thermomonospora curvata coding for a WS/DGAT into different E. coli strains, describe the metabolic effects associated to the expression of this protein and evaluate neutral lipid accumulation. We observe a direct relation between the expression of this WS/DGAT and TAG production within a wide range of culture conditions. More than 30% TAGs were detected within the bacterial neutral lipids in 90 minutes after induction. TAGs were observed to be associated with the hydrophobic enzyme while forming round intracytoplasmic bodies, which could represent a bottleneck for lipid accumulation in E. coli. We detected an increase of almost 3- fold in the monounsaturated fatty acids (MUFA) occurring in the recombinant strains. These MUFA were predominant in the accumulated TAGs achieving 46% of the TAG fatty acids. These results set the basis for further research on the achievement of a suitable method towards the sustainable production of these neutral lipids

    Trehalose-6-phosphate-mediated toxicity determines essentiality of OtsB2 in Mycobacterium tuberculosis in vitro and in mice

    Get PDF
    Trehalose biosynthesis is considered an attractive target for the development of antimicrobials against fungal, helminthic and bacterial pathogens including Mycobacterium tuberculosis. The most common biosynthetic route involves trehalose-6-phosphate (T6P) synthase OtsA and T6P phosphatase OtsB that generate trehalose from ADP/UDP-glucose and glucose-6-phosphate. In order to assess the drug target potential of T6P phosphatase, we generated a conditional mutant of M. tuberculosis allowing the regulated gene silencing of the T6P phosphatase gene otsB2. We found that otsB2 is essential for growth of M. tuberculosis in vitro as well as for the acute infection phase in mice following aerosol infection. By contrast, otsB2 is not essential for the chronic infection phase in mice, highlighting the substantial remodelling of trehalose metabolism during infection by M. tuberculosis. Blocking OtsB2 resulted in the accumulation of its substrate T6P, which appears to be toxic, leading to the self-poisoning of cells. Accordingly, blocking T6P production in a ΔotsA mutant abrogated otsB2 essentiality. T6P accumulation elicited a global upregulation of more than 800 genes, which might result from an increase in RNA stability implied by the enhanced neutralization of toxins exhibiting ribonuclease activity. Surprisingly, overlap with the stress response caused by the accumulation of another toxic sugar phosphate molecule, maltose-1-phosphate, was minimal. A genome-wide screen for synthetic lethal interactions with otsA identified numerous genes, revealing additional potential drug targets synergistic with OtsB2 suitable for combination therapies that would minimize the emergence of resistance to OtsB2 inhibitors

    Metabolic Network for the Biosynthesis of Intra- and Extracellular alpha-Glucans Required for Virulence of Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis synthesizes intra- and extracellular alpha-glucans that were believed to originate from separate pathways. The extracellular glucose polymer is the main constituent of the mycobacterial capsule that is thought to be involved in immune evasion and virulence. However, the role of the alpha-glucan capsule in pathogenesis has remained enigmatic due to an incomplete understanding of alpha-glucan biosynthetic pathways preventing the generation of capsule-deficient mutants. Three separate and potentially redundant pathways had been implicated in alpha-glucan biosynthesis in mycobacteria: the GlgC-GlgA, the Rv3032 and the TreS-Pep2-GlgE pathways. We now show that alpha-glucan in mycobacteria is exclusively assembled intracellularly utilizing the building block alpha-maltose-1-phosphate as the substrate for the maltosyltransferase GlgE, with subsequent branching of the polymer by the branching enzyme GlgB. Some alpha-glucan is exported to form the alpha-glucan capsule. There is an unexpected convergence of the TreS-Pep2 and GlgC-GlgA pathways that both generate alpha-maltose-1-phosphate. While the TreS-Pep2 route from trehalose was already known, we have now established that GlgA forms this phosphosugar from ADP-glucose and glucose 1-phosphate 1000-fold more efficiently than its hitherto described glycogen synthase activity. The two routes are connected by the common precursor ADPglucose, allowing compensatory flux from one route to the other. Having elucidated this unexpected configuration of the metabolic pathways underlying alpha-glucan biosynthesis in mycobacteria, an M. tuberculosis double mutant devoid of alpha-glucan could be constructed, showing a direct link between the GlgE pathway, alpha-glucan biosynthesis and virulence in a mouse infection model

    Ophthalmic Genet

    No full text
    We report on a young female patient with the clinical features of blepharophimosis-ptosis-epicanthus inversus syndrome (BPES, OMIM 110100) and a balanced chromosome translocation 46, XX, t(2;3)(q33;q23)dn.BPES is a rare autosomal dominant congenital disorder characterized by the eponymous oculo-facial features that are, in female patients, associated either with (type 1 BPES) or without (type 2 BPES) premature ovarian failure. Both types of BPES are caused by heterozygous mutations in the FOXL2 gene, which is located in chromosome band 3q23. Chromosome aberrations such as balanced rearrangements have only rarely been observed in BPES patients but can provide valuable information about regulatory regions of FOXL2. The translocation in this patient broadens our knowledge of pathogenic mechanisms in BPES and highlights the importance of conventional cytogenetic investigations in patients with negative results of FOXL2 mutation screening as a prerequisite for optimal management and genetic counseling

    Assembly of α-Glucan by GlgE and GlgB in Mycobacteria and Streptomycetes

    Get PDF
    Actinomycetes, such as mycobacteria and streptomycetes, synthesize α-glucan with α-1,4 linkages and α-1,6 branching to help evade immune responses and to store carbon. α-Glucan is thought to resemble glycogen except for having shorter constituent linear chains. However, the fine structure of α-glucan and how it can be defined by the maltosyl transferase GlgE and branching enzyme GlgB were not known. Using a combination of enzymolysis and mass spectrometry, we compared the properties of α-glucan isolated from actinomycetes with polymer synthesized in vitro by GlgE and GlgB. We now propose the following assembly mechanism. Polymer synthesis starts with GlgE and its donor substrate, α-maltose 1-phosphate, yielding a linear oligomer with a degree of polymerization (∼16) sufficient for GlgB to introduce a branch. Branching involves strictly intrachain transfer to generate a C chain (the only constituent chain to retain its reducing end), which now bears an A chain (a nonreducing end terminal branch that does not itself bear a branch). GlgE preferentially extends A chains allowing GlgB to act iteratively to generate new A chains emanating from B chains (nonterminal branches that themselves bear a branch). Although extension and branching occur primarily with A chains, the other chain types are sometimes extended and branched such that some B chains (and possibly C chains) bear more than one branch. This occurs less frequently in α-glucans than in classical glycogens. The very similar properties of cytosolic and capsular α-glucans from Mycobacterium tuberculosis imply GlgE and GlgB are sufficient to synthesize them both

    Nile red fluorescence screening facilitating neutral lipid phenotype determination in budding yeast, Saccharomyces cerevisiae, and the fission yeast Schizosaccharomyces pombe.

    Get PDF
    Investigation of yeast neutral lipid accumulation is important for biotechnology and also for modelling aberrant lipid metabolism in human disease. The Nile red (NR) method has been extensively utilised to determine lipid phenotypes of yeast cells via microscopic means. NR assays have been used to differentiate lipid accumulation and relative amounts of lipid in oleaginous species but have not been thoroughly validated for phenotype determination arising from genetic modification. A modified NR assay, first described by Sitepu et al. (J Microbiol Methods 91:321-328, 2012), was able to detect neutral lipid changes in Saccharomyces cerevisiae deletion mutants with sensitivity similar to more advanced methodology. We have also be able to, for the first time, successfully apply the NR assay to the well characterised fission yeast Schizosaccharomyces pombe, an increasingly important organism in biotechnology. The described NR fluorescence assay is suitable for increased throughput and rapid screening of genetically modified strains in both the biotechnology industry and for modelling ectopic lipid production for a variety of human diseases. This ultimately negates the need for labour intensive and time consuming lipid analyses of samples that may not yield a desirable lipid phenotype, whilst genetic modifications impacting significantly on the cellular lipid phenotype can be further promoted for more in depth analyses
    corecore