152 research outputs found
Homogenization of three-dimensional micro-heterogeneous materials using nonuniform transformation fields
The inelastic material properties of Metal Matrix Composites (MMC) with particulate reinforcement are investigated. In order to be able to investigate a variety of unit cells a method for the generation and spatial discretization of random model mi-crostructures is presented. The Nonuniform Transformation Field Analysis (NTFA) is employed to investigate the properties of the microheterogeneous material with physical non-linearity. The coefficients of the NTFA are determined from full-field simulations using the Finite Element Method (FEM) on the microscopic scale with consideration of the exact geometry. The homogenized material model is implemented into ABAQUS STANDARD. Numerical examples highlight the efficiency of the method
Asymmetric base-pair opening drives helicase unwinding dynamics
The opening of a Watson-Crick double helix is required for crucial cellular processes, including replication, repair, and transcription. It has long been assumed that RNA or DNA base pairs are broken by the concerted symmetric movement of complementary nucleobases. By analyzing thousands of base-pair opening and closing events from molecular simulations, here, we uncover a systematic stepwise process driven by the asymmetric flipping-out probability of paired nucleobases. We demonstrate experimentally that such asymmetry strongly biases the unwinding efficiency of DNA helicases toward substrates that bear highly dynamic nucleobases, such as pyrimidines, on the displaced strand. Duplex substrates with identical thermodynamic stability are thus shown to be more easily unwound from one side than the other, in a quantifiable and predictable manner. Our results indicate a possible layer of gene regulation coded in the direction-dependent unwindability of the double helix
Serological survey for mycoplasma hyopneumoniae in free-living wild boars from Campos Gerais region, Paraná, Brasil.
The south region of Brazil was responsible for 80.3% of total pork meat export in the country in 2015 (2), with the state of Paraná accountable for 21% of the total pork meat production in that year. Pig farming represented 5.7% of the agricultural gross income of the state in 2016, and the Campos Gerais region accounted for 13.2% of that amount (2). Wild boars are the result of crossbreeding between boars (Sus scrofa scrofa) and domestic pigs (Sus scrofa domesticus). The total population of free-living wild boars in Brazil is unknown (11), but sightings are common in the crop fields and near livestock farms of different regions of Paraná state, including in Campos Gerais (9). The health status of pig herds is important in terms of maintenance and growth of pork production and exports and there are evidences that domestic pigs and wild boars share vulnerabilities in certain viral and bacterial pathogen infections (12). Mycoplasma hyopneumoniae (Mhyo) is a bacterial pathogen that causes porcine enzootic pneumonia, an economically important disease that affects both domestic pigs and wild boars. Mhyo was first isolated in 1965, simultaneously in the United Kingdom (UK) and in the United States of America (USA) (3; 7). Economic losses related to this pathogen and mycoplasmal pneumonia in pig herds are associated with decreased feed efficiency, reduced average of the daily weight gain, and increased medication costs. Thus, knowing the health status of free-living wild boars in the regards of this pathogen is important for the biosecurity of the pork production. The aim of this study was to investigate antibodies against Mhyo in serum samples of free-living wild boars in Campos Gerais region
The European Ryegrass Core Collection: A Tool to Improve the Use of Genetic Resources
A core collection of 162 populations of ryegrass (Lolium perenne) native to 18 European countries, is being evaluated across Europe in a multi-country trial. Each participating country contributed the lesser of 10% or 25 accessions from its collection of native populations. The accessions are being grown at 18 sites in 17 countries. Quick, cheap protocols were developed for evaluation. Preliminary results are presented for performance during the first winter. Populations of northern origin showed uniformly low winter damage and low winter growth at all evaluation sites. Populations of Mediterranean origin were more affected by the environment used for evaluation, developing higher winter yield at sites with mild winters, lower winter yield where winters were colder, and suffering severe damage at sites with the coldest winters
Inhibition of tetraspanin functions impairs human papillomavirus and cytomegalovirus infections
Tetraspanins are suggested to regulate the composition of cell membrane components and control intracellular transport, which leaves them vulnerable to utilization by pathogens such as human papillomaviruses (HPV) and cytomegaloviruses (HCMV) to facilitate host cell entry and subsequent infection. In this study, by means of cellular depletion, the cluster of differentiation (CD) tetraspanins CD9, CD63, and CD151 were found to reduce HPV16 infection in HeLa cells by 50 to 80%. Moreover, we tested recombinant proteins or peptides of specific tetraspanin domains on their effect on the most oncogenic HPV type, HPV16, and HCMV. We found that the C-terminal tails of CD63 and CD151 significantly inhibited infections of both HPV16 and HCMV. Although CD9 was newly identified as a key cellular factor for HPV16 infection, the recombinant CD9 C-terminal peptide had no effect on infection. Based on the determined half-maximal inhibitory concentration (IC50), we classified CD63 and CD151 C-terminal peptides as moderate to potent inhibitors of HPV16 infection in HeLa and HaCaT cells, and in EA.hy926, HFF (human foreskin fibroblast) cells, and HEC-LTT (human endothelial cell-large T antigen and telomerase) cells for HCMV, respectively. These results indicate that HPV16 and HCMV share similar cellular requirements for their entry into host cells and reveal the necessity of the cytoplasmic CD151 and CD63 C-termini in virus infections. Furthermore, this highlights the suitability of these peptides for functional investigation of tetraspanin domains and as inhibitors of pathogen infections
- …