76 research outputs found

    Determinants of grassland primary production in seasonally-dry silvopastoral systems in Central America

    Get PDF
    Grassland primary productivity is the function that underpins the majority of the fodder production in cattle-rearing silvopastoral farms. Hence, understanding the factors that determine grassland productivity is critical for the design and management of silvpastoral systems. We studied the effect of two factors with documented impact on grassland productivity in seasonally dry silvopastures of Nicaragua, rainfall and trees. We assessed the effects of three species that differed in crown size and phenology, one evergreen, Cassia grandis, and two deciduous species, Guazuma ulmifolia and Tabebuia rosea. Overall, grassland ANPP had a quadratic response to rainfall, with a decline at high rainfall that coincided with peak standing biomass and grassland cover. Trees had a predominately negative effect on grassland productivity, and the effect was concentrated in the rainy season at peak productivity. The effect of the trees corresponded with the tree crown area, but not with crown density. Trees reduced the standing biomass of graminoids and increased forb biomass; thus, the effect of trees on grassland ANPP appears in part to respond to changes in grassland composition. We also found higher levels of soil moisture content below the tree canopy, particularly at the peak of the rainy season when soils tend to become waterlogged. The evergreen species, C. grandis, affected grassland ANPP more strongly than the deciduous specie

    Calidad fisiológica de semillas de maní (Arachis hypogaea L.) con distintos grados de madurez

    Get PDF
    El objetivo de este trabajo fue establecer para las condiciones de cultivo de maní en Córdoba (Argentina) qué incidencia tiene la madurez de los frutos sobre la calidad de las semillas que se encuentran en su interior, a fin de especificar qué porcentaje de maduración es el óptimo para la cosecha cuando el destino es la producción de semillas. Se utilizaron frutos producidos bajo condiciones hídricas diferentes, que fueron clasificados de acuerdo a su madurez. Se determinó el perfil de maduración y el peso seco de las semillas de cada grado de madurez.Las semillas de los grados de madurez 2, 3, 4, 5, 6 y 7 fueron sometidas a las pruebas de germinación estándar, peso medio de plántulas y envejecimiento acelerado. El cultivo sin limitantes hídricas aumentó la proporción de frutos maduros.No hubo incidencia del grado de maduración sobre la germinación estándar de las semillas, pero sí ligeramente sobre la germinación luego de ser sometidas a envejecimiento acelerado. El peso medio de plántulas sin sus cotiledones fue marcadamente afectado por la madurez de las semillas

    Determinants of grassland primary production in seasonally-dry silvopastoral systems in Central America

    Get PDF
    Grassland primary productivity is the function that underpins the majority of the fodder production in cattle-rearing silvopastoral farms. Hence, understanding the factors that determine grassland productivity is critical for the design and management of silvpastoral systems. We studied the effect of two factors with documented impact on grassland productivity in seasonally dry silvopastures of Nicaragua, rainfall and trees. We assessed the effects of three species that differed in crown size and phenology, one evergreen, Cassia grandis, and two deciduous species, Guazuma ulmifolia and Tabebuia rosea. Overall, grassland ANPP had a quadratic response to rainfall, with a decline at high rainfall that coincided with peak standing biomass and grassland cover. Trees had a predominately negative effect on grassland productivity, and the effect was concentrated in the rainy season at peak productivity. The effect of the trees corresponded with the tree crown area, but not with crown density. Trees reduced the standing biomass of graminoids and increased forb biomass; thus, the effect of trees on grassland ANPP appears in part to respond to changes in grassland composition. We also found higher levels of soil moisture content below the tree canopy, particularly at the peak of the rainy season when soils tend to become waterlogged. The evergreen species, C. grandis, affected grassland ANPP more strongly than the deciduous species.This research has been co-funded by the Research Council of Norway, Environment 2015 Program and FRIMUF (Grants 204413 – SILPAS and 190134 – Multi-functional Landscapes) and by the European Commission, Directorate General for Research, within the 7th Framework Programme of RTD, Theme 2 – Biotechnology, Agriculture & Food (Grant Agreement No. 227265 - FUNCiTREE). P. Casals is supported by a Ramón y Cajal Contract (Ministerio de Economía y Competitividad, Spain)

    Suitability of key Central American agroforestry species under future climates: an Atlas.

    Get PDF
    This atlas provides habitat suitability maps for 54 species that are widely used in Central America for shade in coffee or cocoa agroforestry systems. The 54 species represent 24 fruit species, 24 timber species and 6 species used for soil fertility improvement. Suitability maps correspond to the baseline climate (1960-1990) and 2050 climates predicted for Representative Concentration Pathways (RCP) 4.5 and 8.5. Habitat was classified as suitable in future climates if a minimum of 12 out of 17 downscaled Global Circulation Models predicted suitable climates. Details of the methodology of ensemble suitability modelling with the BiodiversityR package are provided in the atlas. The atlas was developed to support climate change oriented initiatives for diversification and conservation of forest genetic resources across Central America. Farmers, scientists and technicians can use the atlas to identify suitable and vulnerable areas for shade species and develop strategies for climate change adaptation. This work has been possible by the financial support of the CGIAR research program on Forests, Trees and Agroforestry (FTA; supported by the CGIAR Fund Donors); the CGIAR research program on Climate Change Agriculture and Food Security (CCAFS; supported by the CGIAR Fund Donors) and HIVOS. The authors of this atlas are scientists of Bioversity International, CATIE and the World Agroforestry Centre

    Circulating progenitor cells during exercise, muscle electro-stimulation and intermittent hypobaric hypoxia in patients with traumatic brain injury. A pilot study

    Get PDF
    BACKGROUND: Circulating progenitor cells (CPC) treatments may have great potential for the recovery of neurons and brain function. OBJECTIVE: To increase and maintain CPC with a program of exercise, muscle electro-stimulation (ME) and/or intermittent-hypobaric-hypoxia (IHH), and also to study the possible improvement in physical or psychological functioning of participants with Traumatic Brain Injury (TBI). METHODS: Twenty-one participants. Four groups: exercise and ME group (EEG), cycling group (CyG), IHH and ME group (HEG) and control group (CG). Psychological and physical stress tests were carried out. CPC were measured in blood several times during the protocol. RESULTS: Psychological tests did not change. In the physical stress tests the VO2 uptake increased in the EEG and the CyG, and the maximal tolerated workload increased in the HEG. CPC levels increased in the last three weeks in EEG, but not in CyG, CG and HEG. CONCLUSIONS: CPC levels increased in the last three weeks of the EEG program, but not in the other groups and we did not detect performed psychological test changes in any group. The detected aerobic capacity or workload improvement must be beneficial for the patients who have suffered TBI, but exercise type and the mechanisms involved are not clear

    Water Use, Leaf Cooling and Carbon Assimilation Efficiency of Heat Resistant Common Beans Evaluated in Western Amazonia

    Get PDF
    In our study, we analyzed 30years of climatological data revealing the bean production risks for Western Amazonia. Climatological profiling showed high daytime and nighttime temperatures combined with high relative humidity and low vapor pressure deficit. Our understanding of the target environment allows us to select trait combinations for reaching higher yields in Amazonian acid soils. Our research was conducted using 64 bean lines with different genetic backgrounds. In high temperatures, we identified three water use efficiency typologies in beans based on detailed data analysis on gasometric exchange. Profligate water spenders and not water conservative accessions showed leaf cooling, and effective photosynthate partitioning to seeds, and these attributes were found to be related to higher photosynthetic efficiency. Thus, water spenders and not savers were recognized as heat resistant in acid soil conditions in Western Amazonia. Genotypes such as BFS 10, SEN 52, SER 323, different SEFs (SEF 73, SEF 10, SEF 40, SEF 70), SCR 56, SMR 173, and SMN 99 presented less negative effects of heat stress on yield. These genotypes could be suitable as parental lines for improving dry seed production. The improved knowledge on water-use efficiency typologies can be used for bean crop improvement efforts as well as further studies aimed at a better understanding of the intrinsic mechanisms of heat resistance in legumes

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    More Stable Productivity of Semi Natural Grasslands than Sown Pastures in a Seasonally Dry Climate

    Get PDF
    In the Neotropics the predominant pathway to intensify productivity is generally thought to be to convert grasslands to sown pastures, mostly in monoculture. This article examines how above-ground net primary productivity (ANPP) in semi-natural grasslands and sown pastures in Central America respond to rainfall by: (i) assessing the relationships between ANPP and accumulated rainfall and indices of rainfall distribution, (ii) evaluating the variability of ANPP between and within seasons, and (iii) estimating the temporal stability of ANPP. We conducted sequential biomass harvests during 12 periods of 22 days and related those to rainfall. There were significant relationships between ANPP and cumulative rainfall in 22-day periods for both vegetation types and a model including a linear and quadratic term explained 74% of the variation in the data. There was also a significant correlation between ANPP and the number of rainfall events for both vegetation types. Sown pastures had higher ANPP increments per unit rainfall and higher ANPP at the peak of the rainy season than semi-natural grasslands. In contrast, semi-natural grasslands showed higher ANPP early in the dry season. The temporal stability of ANPP was higher in semi-natural grasslands than in the sown pastures in the dry season and over a whole annual cycle. Our results reveal that, contrary to conventional thinking amongst pasture scientists, there appears to be no increase in ANPP arising from replacing semi-natural grasslands with sown pastures under prevailing pasture management practices in seasonally dry climates, while the temporal distribution of ANPP is more even in semi-natural grasslands. Neither sown pastures nor semi-natural grasslands are productive towards the end of the dry season, indicating the potential importance of the widespread practice of retaining tree cover in pastures
    corecore