1,401 research outputs found

    Complete Genome Sequences of Arcobacter butzleri ED-1 and Arcobacter sp Strain L, Both Isolated from a Microbial Fuel Cell

    Get PDF
    Arcobacter butzleri strain ED-1 is an exoelectrogenic epsilonproteobacterium isolated from the anode biofilm of a microbial fuel cell. Arcobacter sp. strain L dominates the liquid phase of the same fuel cell. Here we report the finished and annotated genome sequences of these organisms

    An Experimental Study of the Effect of Out-of-the-Window Cues on Training Novice Pilots on a Flight Simulator

    Get PDF
    The effects of out-of-the-window cues on learning a straight-in landing approach and a level 360deg turn by novice pilots on a flight simulator have been investigated. The treatments consisted of training with and without visual cues as well as density of visual cues. The performance of the participants was then evaluated through similar but more challenging tasks. It was observed that the participants in the landing study who trained with visual cues performed poorly than those who trained without the cues. However the performance of those who trained with a faded-cues sequence performed slightly better than those who trained without visual cues. In the level turn study it was observed that those who trained with the visual cues performed better than those who trained without visual cues. The study also showed that those participants who trained with a lower density of cues performed better than those who trained with a higher density of visual cues

    BRCA1 and BRCA2 mutations in a population-based study of male breast cancer

    Get PDF
    Background: The contribution of BRCA1 and BRCA2 to the incidence of male breast cancer (MBC) in the United Kingdom is not known, and the importance of these genes in the increased risk of female breast cancer associated with a family history of breast cancer in a male first-degree relative is unclear. Methods: We have carried out a population-based study of 94 MBC cases collected in the UK. We screened genomic DNA for mutations in BRCA1 and BRCA2 and used family history data from these cases to calculate the risk of breast cancer to female relatives of MBC cases. We also estimated the contribution of BRCA1 and BRCA2 to this risk. Results: Nineteen cases (20%) reported a first-degree relative with breast cancer, of whom seven also had an affected second-degree relative. The breast cancer risk in female first-degree relatives was 2.4 times (95% confidence interval [CI] = 1.4–4.0) the risk in the general population. No BRCA1 mutation carriers were identified and five cases were found to carry a mutation in BRCA2. Allowing for a mutation detection sensitivity frequency of 70%, the carrier frequency for BRCA2 mutations was 8% (95% CI = 3–19). All the mutation carriers had a family history of breast, ovarian, prostate or pancreatic cancer. However, BRCA2 accounted for only 15% of the excess familial risk of breast cancer in female first-degree relatives. Conclusion: These data suggest that other genes that confer an increased risk for both female and male breast cancer have yet to be found

    Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler

    Get PDF
    We report the distribution of planets as a function of planet radius (R_p), orbital period (P), and stellar effective temperature (Teff) for P < 50 day orbits around GK stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 Earth radii (Re). For each of the 156,000 target stars we assess the detectability of planets as a function of R_p and P. We also correct for the geometric probability of transit, R*/a. We consider first stars within the "solar subset" having Teff = 4100-6100 K, logg = 4.0-4.9, and Kepler magnitude Kp < 15 mag. We include only those stars having noise low enough to permit detection of planets down to 2 Re. We count planets in small domains of R_p and P and divide by the included target stars to calculate planet occurrence in each domain. Occurrence of planets varies by more than three orders of magnitude and increases substantially down to the smallest radius (2 Re) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the radius distribution is given by a power law, df/dlogR= k R^\alpha. This rapid increase in planet occurrence with decreasing planet size agrees with core-accretion, but disagrees with population synthesis models. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P_0. For smaller planets, P_0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over Teff = 3600-7100 K, spanning M0 to F2 dwarfs. The occurrence of 2-4 Re planets in the Kepler field increases with decreasing Teff, making these small planets seven times more abundant around cool stars than the hottest stars in our sample. [abridged]Comment: Submitted to ApJ, 22 pages, 10 figure

    Effects of exposure to facial expression variation in face learning and recognition.

    Get PDF
    Facial expression is a major source of image variation in face images. Linking numerous expressions to the same face can be a huge challenge for face learning and recognition. It remains largely unknown what level of exposure to this image variation is critical for expression-invariant face recognition. We examined this issue in a recognition memory task, where the number of facial expressions of each face being exposed during a training session was manipulated. Faces were either trained with multiple expressions or a single expression, and they were later tested in either the same or different expressions. We found that recognition performance after learning three emotional expressions had no improvement over learning a single emotional expression (Experiments 1 and 2). However, learning three emotional expressions improved recognition compared to learning a single neutral expression (Experiment 3). These findings reveal both the limitation and the benefit of multiple exposures to variations of emotional expression in achieving expression-invariant face recognition. The transfer of expression training to a new type of expression is likely to depend on a relatively extensive level of training and a certain degree of variation across the types of expressions

    Promiscuous Expression of α-Tubulin II in Maturing Male and Female Plasmodium falciparum Gametocytes

    Get PDF
    BACKGROUND: Antimalarial interventions designed to impact on the transmissible sexual stages of Plasmodium falciparum are evaluated by measurement of peripheral gametocyte carriage in vivo and infectivity to mosquitoes. Drug or vaccine-elicited effects may differentially affect the relative abundance of mature male and female sexual forms, and this can be measured by estimation of sex ratios before and after intervention in vivo and in vitro. Measuring the impact of anti-gametocyte drugs on sexual commitment of immature gametocyte stages in vitro is not currently possible as male and female parasites cannot be distinguished by morphology alone prior to stage IV. METHODOLOGY/PRINCIPAL FINDINGS: We have modified an existing immunofluorescence-based approach for distinguishing male and female gametocytes during development in vitro, by using highly synchronised magnetically-enriched gametocyte preparations at different stages of maturity. Antibodies recognising α-tubulin II (males) and Pfg377 (females) were used to attempt to discriminate the sexes. Transcription of these two proteins was not coordinated during in vitro development, with pfg377 transcripts accumulating only late in development, immediately prior to immunofluorescent signals from the PfG377 protein appearing in stage IV gametocytes. Contrary to previous descriptions of this protein as male-specific in P. falciparum, α-tubulin II recognised both male and female gametocytes at stages I to IV, but evidence of differential expression levels of this protein in late stage male and female gametocytes was found. Using antibodies recognising PfG377 as the primary marker and α-tubulin II as a secondary marker, robust estimates of sex ratio in in vitro cultures were obtained for gametocytes at stage IV or later, and validated by light microscopic counts. However, sex ratio estimation was not possible for early stage gametocytes due to the promiscuity of α-tubulin II protein expression, and the relatively late accumulation of PfG377 during the development process. CONCLUSIONS/SIGNIFICANCE: This approach is a feasible method for the evaluation of drug impacts on late-stage gametocyte sex ratio in in vitro studies. Additional sex-specific antigens need to be evaluated for sex ratio estimation in early stage gametocyte preparations

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation
    corecore