232 research outputs found

    Efeitos do treinamento aquático em posição vertical: diferentes aplicações e suas respostas fisiológicas

    Get PDF
    It is demonstrated that available experimental information on photon strength functions (PSFs) at energies below about 10 MeV is far from desired. Problems that occur during the extraction of PSFs from (n, γ), (γ,γ′), and 3He-induced reactions are discussed

    First Measurement of 72Ge(n,γ) at n_TOF

    Get PDF
    9th European Summer School on Experimental Nuclear AstrophysicsThe slow neutron capture process (s-process) is responsible for producing about half of the elemental abundances heavier than iron in the universo

    High precision measurement of the radiative capture cross section of 238U at the n-TOF CERN facility

    Get PDF
    The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented

    The 236U neutron capture cross-section measured at the n-TOF CERN facility

    Get PDF
    The 236U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the 236U(n, γ) reaction crosssection has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n TOF facility with two different detection systems: an array of C6D6 detectors, employing the total energy deposited method, and a 4π total absorption calorimeter (TAC), made of 40 BaF2 crystals. The two n TOF data sets agree with each other within the statistical uncertainty in the Resolved Resonance Region up to 800 eV, while sizable differences (up to 20%) are found relative to the current evaluated data libraries. Moreover two new resonances have been found in the n TOF data. In the Unresolved Resonance Region up to 200 keV, the n TOF results show a reasonable agreement with previous measurements and evaluated data

    Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN

    Get PDF
    New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241 Am(n,γ) cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.Plan Nacional I+D+I FPA2014-53290-C2-1Comisión Europea, ANDES FP7- 249671Comisión Europea, CHANDA FP7-60520

    Thermal and electromagnetic properties of 166-Er and 167-Er

    Full text link
    The primary gamma-ray spectra of 166-Er and 167-Er are deduced from the (3-He,alpha gamma) and (3-He,3-He' gamma) reaction, respectively, enabling a simultaneous extraction of the level density and the gamma-ray strength function. Entropy, temperature and heat capacity are deduced from the level density within the micro-canonical and the canonical ensemble, displaying signals of a phase-like transition from the pair-correlated ground state to an uncorrelated state at Tc=0.5 MeV. The gamma-ray strength function displays a bump around E-gamma=3 MeV, interpreted as the pygmy resonance.Comment: 21 pages including 2 tables and 11 figure

    Level density and thermal properties in rare earth nuclei

    Full text link
    A convergent method to extract the nuclear level density and the gamma-ray strength function from primary gamma-ray spectra has been established. Thermodynamical quantities have been obtained within the microcanonical and canonical ensemble theory. Structures in the caloric curve and in the heat capacity curve are interpreted as fingerprints of breaking of Cooper pairs and quenching of pairing correlations. The strength function can be described using models and common parameterizations for the E1, M1 and pygmy resonance strength. However, a significant decrease of the pygmy resonance strength at finite temperatures has been observed.Comment: 15 pages including 8 figures. Proceedings article for the conference Nuclear Structure and Related Topics, Dubna, Russia, June 6-10, 200

    Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN

    Get PDF
    The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.Peer reviewedFinal Accepted Versio
    corecore