184 research outputs found

    First tests of the applicability of γ\gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements

    Full text link
    In this work we explore for the first time the applicability of using γ\gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3_3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a 197^{197}Au sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.Comment: Preprint submitted to Nucl. Instr. and Meth.

    Virtual synchronous-machine control of voltage-source converters in a low-voltage microgrid

    Get PDF
    In order to facilitate the further integration of distributed renewable generation into existing power systems, enhanced control schemes for grid-tied power electronic converters are necessary to ensure non-synchronous power sources can provide power and support to the grid. The virtual-synchronous-machine concept proposes the use of control schemes to enable static generators to operate with the dynamics of rotating synchronous generators. In this paper, a control scheme is presented based on the principle of active-power synchronization to regulate the active power of a grid-tied voltage-source converter based on an emulation of the synchronous-machine swing equation. Design of a cascaded inner-loop voltage and resonant current control is presented to regulate the output voltage as specified via the outer-loop virtual-machine control scheme responsible for power regulation. The performance of this control scheme is investigated within the context of microgrid operation for the provision of active and reactive power to the system, and microgrid frequency support. Experimental validation is provided via the use of a 15 kVA three-phase VSC in a 90 kVA 400V microgrid

    New accurate measurements of neutron emission probabilities for relevant fission products

    Get PDF
    We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations.Postprint (published version

    Effect of periodontal dressing on nonâ surgical periodontal treatment outcomes: a systematic review

    Full text link
    BackgroundPeriodontal dressing has been advocated and showed some positive outcomes for placing over the surgical site after periodontal surgery. However, little is known about its effect on nonâ surgical therapy.PurposeThe aim of this review was to assess the clinical effect of periodontal dressing when used after nonâ surgical therapy.Material and methodsTwo examiners performed an electronic search in several databases for relevant articles published in English up to November 2013. Selected studies were randomized human clinical trials (prospective or retrospective trials) with the clear aim of investigating the effect of periodontal dressing placement upon periodontal nonâ surgical mechanical therapy. Data were extracted from the included articles for analysis.ResultsThree randomized clinical trials fulfilled the inclusion criteria and thus were included in the data analysis. Statistical analysis could not be carried out due to the lack of clear data of the included studies. However, descriptive analysis showed its effectiveness in improving clinical parameters such as gain of clinical attachment level and reduction of probing pocket depth.ConclusionPlacement of periodontal dressing right after nonâ surgical mechanical therapy can be beneficial in improving overall shortâ term clinical outcomes, although more controlled studies are still needed to validate this finding.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/122435/1/idh12130.pd

    Performance of HPGe Detectors in High Magnetic Fields

    Full text link
    A new generation of high-resolution hypernuclear gamma$-spectroscopy experiments with high-purity germanium detectors (HPGe) are presently designed at the FINUDA spectrometer at DAPhiNE, the Frascati phi-factory, and at PANDA, the antiproton proton hadron spectrometer at the future FAIR facility. Both, the FINUDA and PANDA spectrometers are built around the target region covering a large solid angle. To maximise the detection efficiency the HPGe detectors have to be located near the target, and therefore they have to be operated in strong magnetic fields B ~ 1 T. The performance of HPGe detectors in such an environment has not been well investigated so far. In the present work VEGA and EUROBALL Cluster HPGe detectors were tested in the field provided by the ALADiN magnet at GSI. No significant degradation of the energy resolution was found, and a change in the rise time distribution of the pulses from preamplifiers was observed. A correlation between rise time and pulse height was observed and is used to correct the measured energy, recovering the energy resolution almost completely. Moreover, no problems in the electronics due to the magnetic field were observed.Comment: submitted to Nucl. Instrum. Meth. Phys. Res. A, LaTeX, 19 pages, 9 figure

    First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements

    Get PDF
    In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample. (C) 2016 Elsevier B.V. All rights reserved.Postprint (author's final draft

    First tests of the applicability of γ-ray imaging for background discrimination in time-of-flight neutron capture measurements

    Get PDF
    In this work we explore for the first time the applicability of using γ-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a 197Au sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.España, Ministerio de Economía y Competitivdad FPA2011-24553España, Ministerio de Economía y Competitivdad FPA2013-45083-PEspaña, Ministerio de Economía y Competitivdad SEV-2014-039

    CALIFA, the Calar Alto Legacy Integral Field Area survey: I. Survey presentation

    Get PDF
    We present here the Calar Alto Legacy Integral Field Area (CALIFA) survey, which has been designed to provide a first step in this direction.We summarize the survey goals and design, including sample selection and observational strategy.We also showcase the data taken during the first observing runs (June/July 2010) and outline the reduction pipeline, quality control schemes and general characteristics of the reduced data. This survey is obtaining spatially resolved spectroscopic information of a diameter selected sample of 600\sim600 galaxies in the Local Universe (0.005< z <0.03). CALIFA has been designed to allow the building of two-dimensional maps of the following quantities: (a) stellar populations: ages and metallicities; (b) ionized gas: distribution, excitation mechanism and chemical abundances; and (c) kinematic properties: both from stellar and ionized gas components. CALIFA uses the PPAK Integral Field Unit (IFU), with a hexagonal field-of-view of \sim1.3\sq\arcmin', with a 100% covering factor by adopting a three-pointing dithering scheme. The optical wavelength range is covered from 3700 to 7000 {\AA}, using two overlapping setups (V500 and V1200), with different resolutions: R\sim850 and R\sim1650, respectively. CALIFA is a legacy survey, intended for the community. The reduced data will be released, once the quality has been guaranteed. The analyzed data fulfill the expectations of the original observing proposal, on the basis of a set of quality checks and exploratory analysis. We conclude from this first look at the data that CALIFA will be an important resource for archaeological studies of galaxies in the Local Universe.Comment: 32 pages, 29 figures, Accepted for publishing in Astronomy and Astrophysic

    Antimicrobial Peptides and Skin: A Paradigm of Translational Medicine

    Get PDF
    Antimicrobial peptides (AMPs) are small, cationic, amphiphilic peptides with broad-spectrum microbicidal activity against both bacteria and fungi. In mammals, AMPs form the first line of host defense against infections and generally play an important role as effector agents of the innate immune system. The AMP era was born more than 6 decades ago when the first cationic cyclic peptide antibiotics, namely polymyxins and tyrothricin, found their way into clinical use. Due to the good clinical experience in the treatment of, for example, infections of mucus membranes as well as the subsequent understanding of mode of action, AMPs are now considered for treatment of inflammatory skin diseases and for improving healing of infected wounds. Based on the preclinical findings, including pathobiochemistry and molecular medicine, targeted therapy strategies are developed and first results indicate that AMPs influence processes of diseased skin. Importantly, in contrast to other antibiotics, AMPs do not seem to propagate the development of antibiotic-resistant micro-organisms. Therefore, AMPs should be tested in clinical trials for their efficacy and tolerability in inflammatory skin diseases and chronic wounds. Apart from possible fields of application, these peptides appear suited as an example of the paradigm of translational medicine for skin diseases which is today seen as a `two-way road' - from bench to bedside and backwards from bedside to bench. Copyright (c) 2012 S. Karger AG, Base
    corecore