1,158 research outputs found

    Numerical Analysis of a New Mixed Formulation for Eigenvalue Convection-Diffusion Problems

    Get PDF
    A mixed formulation is proposed and analyzed mathematically for coupled convection-diffusion in heterogeneous medias. Transfer in solid parts driven by pure diffusion is coupled with convection-diffusion transfer in fluid parts. This study is carried out for translation-invariant geometries (general infinite cylinders) and unidirectional flows. This formulation brings to the fore a new convection-diffusion operator, the properties of which are mathematically studied: its symmetry is first shown using a suitable scalar product. It is proved to be self-adjoint with compact resolvent on a simple Hilbert space. Its spectrum is characterized as being composed of a double set of eigenvalues: one converging towards −∞ and the other towards +∞, thus resulting in a nonsectorial operator. The decomposition of the convection-diffusion problem into a generalized eigenvalue problem permits the reduction of the original three-dimensional problem into a two-dimensional one. Despite the operator being nonsectorial, a complete solution on the infinite cylinder, associated to a step change of the wall temperature at the origin, is exhibited with the help of the operator’s two sets of eigenvalues/eigenfunctions. On the computational point of view, a mixed variational formulation is naturally associated to the eigenvalue problem. Numerical illustrations are provided for axisymmetrical situations, the convergence of which is found to be consistent with the numerical discretization

    Communication diagnosis of a financial service process

    Get PDF

    The 63^{63}Ni(n,γ\gamma) cross section measured with DANCE

    Get PDF
    The neutron capture cross section of the s-process branch nucleus 63^{63}Ni affects the abundances of other nuclei in its region, especially 63^{63}Cu and 64^{64}Zn. In order to determine the energy dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4π\pi BaF2_2 array DANCE. The (n,γ\gamma) cross section of 63^{63}Ni has been determined relative to the well known 197^{197}Au standard with uncertainties below 15%. Various 63^{63}Ni resonances have been identified based on the Q-value. Furthermore, the s-process sensitivity of the new values was analyzed with the new network calculation tool NETZ.Comment: 11 pages, 13 page

    The Role of Deontic Logic in the Specification of Information Systems

    Get PDF
    In this paper we discuss the role that deontic logic plays in the specification of information systems, either because constraints on the systems directly concern norms or, and even more importantly, system constraints are considered ideal but violable (so-called `soft¿ constraints).\ud To overcome the traditional problems with deontic logic (the so-called paradoxes), we first state the importance of distinguishing between ought-to-be and ought-to-do constraints and next focus on the most severe paradox, the so-called Chisholm paradox, involving contrary-to-duty norms. We present a multi-modal extension of standard deontic logic (SDL) to represent the ought-to-be version of the Chisholm set properly. For the ought-to-do variant we employ a reduction to dynamic logic, and show how the Chisholm set can be treated adequately in this setting. Finally we discuss a way of integrating both ought-to-be and ought-to-do reasoning, enabling one to draw conclusions from ought-to-be constraints to ought-to-do ones, and show by an example the use(fulness) of this

    Flux and Instanton Effects in Local F-theory Models and Hierarchical Fermion Masses

    Full text link
    We study the deformation induced by fluxes and instanton effects on Yukawa couplings involving 7-brane intersections in local F-theory constructions. In the absence of non-perturbative effects, holomorphic Yukawa couplings do not depend on open string fluxes. On the other hand instanton effects (or gaugino condensation on distant 7-branes) do induce corrections to the Yukawas. The leading order effect may also be captured by the presence of closed string (1,2) IASD fluxes, which give rise to a non-commutative structure. We check that even in the presence of these non-perturbative effects the holomorphic Yukawas remain independent of magnetic fluxes. Although fermion mass hierarchies may be obtained from these non-perturbative effects, they would give identical Yukawa couplings for D-quark and Lepton masses in SU(5) F-theory GUT's, in contradiction with experiment. We point out that this problem may be solved by appropriately normalizing the wavefunctions. We show in a simple toy model how the presence of hypercharge flux may then be responsible for the difference between D-quarks and Lepton masses in local SU(5) GUT's.Comment: 84 pages, 1 figure. v2: minor corrections and references adde

    Gauge Fluxes in F-theory and Type IIB Orientifolds

    Full text link
    We provide a detailed correspondence between G_4 gauge fluxes in F-theory compactifications with SU(n) and SU(n)x(1) gauge symmetry and their Type IIB orientifold limit. Based on the resolution of the relevant F-theory Tate models we classify the factorisable G_4-fluxes and match them with the set of universal D5-tadpole free U(1)-fluxes in Type IIB. Where available, the global version of the universal spectral cover flux corresponds to Type IIB gauge flux associated with a massive diagonal U(1). In U(1)-restricted Tate models extra massless abelian fluxes exist which are associated with specific linear combinations of Type IIB fluxes. Key to a quantitative match between F-theory and Type IIB is a proper treatment of the conifold singularity encountered in the Sen limit of generic F-theory models. We also shed further light on the brane recombination process relating generic and U(1)-restricted Tate models.Comment: 53 pages, 3 figures; v2: Refs added; v3: minor corrections to match version published in JHE
    corecore