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Abstract 

Spintronic applications based on magnetic domain wall (DW) motion, such as magnetic data 

storage, sensors and logic devices, require approaches to reliably manipulate the magnetization in 

nanowires. In this work, we report the direct dynamic experimental visualization of reliable 

switching from the onion to the vortex state by DW automotion at zero field in asymmetric 

ferromagnetic rings using a uniaxial field pulse. Employing time-resolved X-ray microscopy, we 

demonstrate that depending on the detailed spin structure of the DWs and the size and geometry of 

the rings, the automotive propagation can be tailored during the DW relaxation from the higher 

energy onion state to the energetically favored vortex state, where both DWs annihilate. Our 

measurements show DW automotion with an average velocity of about ~ 60 m/s, which is a 

significant speed for spintronic devices. Such motion is mostly governed by local forces resulting 

from the geometry variations in the device. A closer study of the annihilation process via 

micromagnetic simulations reveals that a new vortex is nucleated in-between the two initial walls. 

We demonstrate that the annihilation of DWs through automotion in our scheme always occurs 

with the detailed topological nature of the walls only influencing the DW dynamics on a local scale. 

The simulations show good quantitative agreement with our experimental results. These findings 

shed light on a robust and reliable switching process of the onion state in ferromagnetic rings, 

which paves the way for further optimization of these devices. 
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I. Introduction: 

Reliable switching of magnetic elements is a key prerequisite for their employment in devices such 

as magnetic memory [1 - 4]. The ring geometry has been identified as a particularly well-suited 

geometry, as the flux-closure vortex state is completely stray-field free [5] in contrast to a disc, for 

instance, where the vortex core can still generate a sizeable stray field. Thus the two-fold 

energetically degenerate vortex state in a ring has a particularly high stability and was shown to be 

present even in small structures [6]. In order to switch between the two possible vortex states used 

for data storage (clockwise and counterclockwise) directly, circular magnetic fields or similar 

complex fields would be needed, which are difficult to generate [7, 8]. A simpler and more 

accessible method is to switch with a homogeneous field from the “vortex state” to the “onion 

state” with two DWs [9 - 12] and then back to the vortex state with opposite sense of rotation. 

Using asymmetric rings, this can be achieved by applying a uniaxial magnetic field to generate the 

onion state and then the two DWs move due to the asymmetry of the ring as previously shown [13]. 

By engineering the ring asymmetry and the field direction, the two DWs can move towards each 

other and if they annihilate they form one of the vortex states. On reversing the applied field 

direction the opposite onion state is obtained and by symmetry arguments this then switches to the 

opposite vortex state. So fundamentally we can switch between two vortex states by going via the 

appropriate onion state and this means one can switch between the vortex states using just a uniaxial 

field with no need for complex circular fields. This was proposed theoretically [14] for tailored 

geometries with asymmetries and experimentally it was shown that switching in asymmetric rings 

can lead to a desired vortex chirality [15]. 

However, so far only the static switched states have been investigated [16] and the dynamics and 

the time scale for the switching are not knowns. Furthermore, the switching from the onion to the 

vortex state needs to occur without any additional external fields if one wants to operate the device 

with a single field direction, which is desirable for simple device design. This requires DW 

automotion driven by the internal forces resulting from the device geometry and the accompanying 

spin structure changes [17]. This automotion process is so far little explored, but has been 

theoretically proposed for spintronics interconnects [18]. Experimentally the details of the 

automotion are not known and in particular the speed and reliability needs to be determined in 

order to gauge the applicability for devices. Furthermore, since DWs are predicted to be attracted 

to each other or repelled from each other, depending on their topology [19], it is unclear for instance 

how the repulsion prevents one from using the automotion to switch into the vortex state where the 

DWs need to be fully annihilated. 

Consequently in order to develop devices with switching by DW automotion, the dynamics of this 

special process need to be understood and controlled and the robustness of the switching process 

needs to be ascertained. 

In this paper, we study DW automotion, when two DWs propagate towards each other, without an 

externally applied field. We show that such motion in ferromagnetic rings is mostly governed by 

local forces. Through a closer look at the annihilation process using micromagnetic simulations we 
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reveal the details of how the process occurs. We explain our data based on three dynamical forces 

that drive the DW. The observation of the DW automotion and annihilation process sheds light on 

the switching of the onion state in ferromagnetic rings, which paves the way for further 

optimization of these devices. 

II. Samples and experimental 

Asymmetric ferromagnetic permalloy rings were fabricated with an outer diameter of 5.5 µm and 

non-centered inner diameter of 4 µm, and a thickness of 30 nm (Fig. 1). Variation of the DW 

potential landscape was introduced to the sample by this non-concentric geometry. Here the inner 

circular cut-off is shifted with respect to the outer circular edge of the ring, making the width of 

the ring angularly dependent (Figure 1(a)) [13]. For the experiment the ferromagnetic rings are 

initialized in the onion state [16], following a magnetic field excitation pulse. Afterwards the 

magnetic structure is relaxed and the domain and DW dynamics are observed at zero external field. 

In particular, automotive DW propagation driven by the gradient in energy resulting from the 

varying width leads to the lowest energy state (vortex state) being attained on a time scale of a few 

tens of nanoseconds. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic of the sample geometry and layout used in the experiment. (a) Angular 

variation of the sample geometry for different rings with narrowest widths of 400 and 500 

nanometers. (b) Merged STXM-XMCD image of an asymmetric ring in the onion state with a 

scanning electron micrograph image of the sample under investigation. The unidirectional in-

plane magnetic field pulse is generated by burst current pulses, Ix,y, injected through one or both 

crossed-striplines, depending on the desired magnetic field orientation. Black (white) contrast 

corresponds to magnetization pointing to the left (right), as illustrated by the green arrows and 

the greyscale bar is provided. 
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The time evolution of the magnetization dynamics is recorded stroboscopically via a pump and 

probe technique employing time resolved scanning transmission X-ray microscopy (STXM), with 

a sub 30 nm spatial resolution, at the MAXYMUS endstation of the BESSY II synchrotron [20, 

21]. The in-plane magnetization component was imaged by tilting the sample surface normal by 

30° with respect to the incident light direction. The contrast of the image is based on the X-ray 

magnetic circular dichroism (XMCD) effect [22]. The data were recorded at the Ni L3-absorption 

edge (852.7 eV). In this study, the pump process consists of a short unidirectional or rotating in-

plane magnetic field pulse.  

Thus, the excitation signal can be either one of the two following cases: Firstly, a burst current 

pulse, Ix,y, injected through one or both crossed-striplines, depending on the desired magnetic field 

orientation leading to an unidirectional field pulse. Secondly rotating magnetic field pulses created 

by injecting two continuous sinusoidal signals, 90° phase shifted, which pass simultaneously 

through the two ends of crossed striplines (figure 1(b)) and are then switched off to initialize the 

onion state along a desired direction. 

The maximum pulse amplitude used in this experiment for the rotating magnetic field pulse was 

5 𝑉, whereas 7 𝑉 was used for the unidirectional field pulse. These values correspond to a 

maximum current density of between 𝑗 ≈ 1011 𝐴/𝑚2 and 𝑗 ≈ 1012 𝐴/𝑚2, depending on the 

resistances of the samples used. This is roughly the limit before irreversible structural damage of 

our samples occurs due to heating. In order to minimize such damage we performed the 

measurement, with a Helium atmosphere in the microscope chamber and using pulses with a duty 

cycle of less than 25 %. 

It is worth emphasizing that the experiment is repeated at a repetition rate of 832 kHz and the 

transmission X-ray signal is recorded over more than ten billion subsequent pulse cycles, and hence 

DW propagation events, ensuring a high signal-to-noise ratio and  therefore visible contrast 

demonstrates the reproducibility and the reliability of our measurement results. Further details on 

the sample fabrication and experimental setup and measurement procedure can be found in Refs. 

[23, 24]. 

III. Results 

As a first step, we record the magnetic structure after the injection of a short unidirectional uniform 

magnetic field excitation with field strength of 𝐁 ≈ 9 mT and pulse duration of ~ 25 ns with a 

symmetric rise and fall-time which is approximately ~ 8 ns. The Zeeman energy is minimal when 

both DWs align with the applied in-plane external magnetic field. Thus the two DWs are roughly 

oriented along the axis of the field pulse, which is in this case the direction perpendicular to the 

symmetrical axis of the ring (i.e. 45° axis), as shown in figure 2(a). This figure depicts the initial 

magnetic configuration and position of the two DWs, for a 500 nm minimal width asymmetrical 

ring structure. In this case, we can clearly see two vortex DWs are present. The chirality of the two 

DWs is clockwise after a unidirectional magnetic field excitation. This is in contrast to the chirality 

that we find after a clockwise rotating magnetic field excitation with field strength of 𝐁 ≈ 7 mT 

and pulse duration of  ~ 100 ns. The latter consists of one full rotation with a constant field strength  
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𝐁, and fixed rotation frequency, 𝑓 = 10 𝑀𝐻𝑧, with a starting angle along the 45° axis direction, 

as shown in figure 2(b). Note that the azimuthal symmetric axis of the ring is along the 135° axis.   

Here the two diametrically opposed vortex DWs have opposite chiralities after rotation [23, 24], as 

shown in figure 2(d). Note that the chirality of the nucleated DWs depend on the details of the 

nucleation process [25]. However, it is important to note that the chirality is reproducible, as seen 

from the strong contrast in Fig. 2(a,d).  

In the next step, after the onion state nucleation process is finished and the magnetic field pulse is 

off, we dynamically image the spontaneous DW propagation for zero external applied fields.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Automotive DW propagation in an asymmetric ring: (a) and (d) time-resolved XMCD-

STXM images (at t = 0 ns) showing the relaxed onion state after excitation with a uniform external 

magnetic field, B, with direction indicated by the red arrow, either unidirectional (a) or rotational 

(d), for the case of equal and opposite vortex wall chirality (500 and 400 nm minimum width), 

respectively. These images visualize the magnetization state just before the start of the 

automotion process. The vortex core polarity of both vortex walls is indicated in red (head-to-

head) and blue (tail-to-tail). The yellow arrows indicate the direction of the magnetization. Panels 

(b, c) and (e, f) show the DW velocities (absolute values) plotted as a function of the azimuthal 

angle and time for the automotive propagation of two vortex walls with the same and opposite 

chirality, respectively. Blue and red arrows indicate the propagation direction of the DWs. The 

averaged annihilation area where DWs getting close enough is indicated in purple. Insets in panels 

(c) and (e) present the time-resolved XMCD-STXM snapshots at t = 58 ns and t = 50 ns showing 

the vortex state (clockwise) after the annihilation process of the DWs for the approach of two 

vortex walls with same and opposite chirality, respectively. Red and blue lines illustrate the 

trajectory of the DW vortex core, extracted from the time resolved movie. White (black) contrast 

corresponds to magnetization pointing to the right (left). 
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A snapshot of the moving DWs is taken every 2 ns, in a stroboscopic scheme as described above 

and detailed in Ref. [24]. Thus, these snapshots of the dynamic magnetic contrast represent time-

resolved XMCD-STXM images. The temporal resolution of a single frame is limited by the 

electronics jitter to ~ 300 ps.  

The vortex core positions are determined for each image from the black–white contrast manually. 

The instantaneous DW velocity is then calculated by applying a moving average filter as described 

in Ref. [24]. 

The results of the automotive DW propagation of two walls in the asymmetric ring, are shown in 

figure 2. Firstly, we consider the approach of two vortex walls having the same chirality, shown in 

figure 2(a-c). Here, the DWs start to move immediately after the magnetic field pulse is removed. 

The absolute velocity profiles (speed as a non-vectorial quantity) are given in figure 2(b, c) and 

show that the tail-to-tail wall (in blue) accelerates first and reaches as its maximum velocity after 

~ 10 ns, whereas the maximum velocity of the head-to-head wall (in red) is reached later at ~ 25 

ns. This can be easily explained by the fact that the initial position of the tail-to-tail DW is slightly 

closer to the highest width gradient of the ring than the head-to-head wall, since the onion state is 

not perfectly aligned with the perpendicular direction of the symmetrical axis of the asymmetric 

ring. Thus, the influence of shape of the sample on the DW resulting from the highest width 

gradient is highest at the beginning for the tail-to-tail wall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Time-resolved STXM-XMCD snapshots of automotive DWs motion during the switching 

process from the onion to the vortex state in the ferromagnetic rings, for the case of equal (a) 

and opposite (b) vortex wall chirality. These snapshots represent part of the XMCD movies used 

to extract the DW velocities plotted in figure 2. Red and blue lines illustrate the averaged 

trajectory of the vortex core of both vortex walls head-to-head and tail-to-tail, respectively. 
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The velocity of this wall oscillates slightly during the propagation, possibly due to a naturally 

occurring pinning center due to unavoidable defects and edge roughness from the fabrication 

process. The second increase in velocity for the tail-to-tail wall is smaller than for the first 

acceleration since the wall has already passed the highest width gradient position (see figure 1(a)), 

and is now closer to the narrowest part (zero width gradient) where both DWs annihilate. On the 

other side, the velocity of the head-to-head DW starts to decrease. We note that the global 

maximum velocity of both DWs during automotion is similar and sizeable (> 40 m/s). 

In order to investigate the automotive vortex DW dynamics in relation to the topological character 

of the walls (chirality), we now study the approach of two vortex walls of opposite chirality as 

shown in figure 2(d-f). It can be seen that the velocity profile looks qualitatively similar to the 

previous one, however clear quantitative differences are apparent. In particular during the final 

stages of the DW approach. For instance, considering the tail-to-tail wall velocity plotted in blue 

in the graph of figure 2(b, c), we can see that the second peak in velocity is lower than the first one, 

whereas in figure 2(e, f) the second peak in velocity of the same wall is higher. Furthermore when 

comparing the time between these two local peak velocities and the full annihilation of the walls, 

we find that in the second case the annihilation occurs much sooner (~ 14 ns) than the first case (~ 

24 ns).  

It is worth mentioning that the details of the motion are influenced by the local structure of the 

device. Furthermore, the detailed DW spin structure is influenced by the device geometry and 

crystalline structure of the material that leads to possible local variations of the magnetic properties. 

Thus the exact details of the DW dynamics vary from one device to another and depend on the wall 

position. However the overall behavior of the motion of the DWs towards the narrow part of the 

ring is robust and has been observed in dozens of studied samples (not shown). 

Moreover, we note that as known for all spontaneous and switching mechanisms, the exact 

evolution depends mainly on the pinning and thermal activation [26] which determine the time for 

reversal and modifies the evolution, leading to some blurring of the XMCD-image that is averaged 

across all repetitions in our experimental imaging technique, as described above (see figure 3). 

Therefore during the annihilation process, the image contrast of the vortex DWs is slightly blurred, 

leading to less accuracy in defining the exact vortex core position during the automotion and in 

particular when DWs enter the purple area where they annihilate, as shown in figure 2(b, e). In 

other words, the extracted DW position represents the averaged DW position which lead to a very 

small accuracy in defining the wall position in this area. This would explain the different behaviors 

observed correlated to the DW positions in the purple area in both cases (shown in figure 2(b, e)). 

These differences have no importance or physical meaning even though the topology of DWs is 

found to be important for the dynamics at this region. For example in one case (Fig. 2(b)) the red 

wall moves further to the left than the blue wall and in the other case (Fig. 2(e)) the walls do not 

even meet. This highlights the necessity to perform micromagnetic simulations which allow us to 

investigate the detailed intrinsic spin structure changes and their contribution to the DW dynamics 

in these regions.  
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Thus, in order to understand the automotion in more detail and how these different behaviors relate 

to the topological nature of the walls we carried out micromagnetic simulations for the two cases 

of equal and opposite DW chirality. The micromagnetic simulation was performed using the 

MicroMagnum code [27]. The dimensions of the simulated asymmetric rings presented here are 

the same as those used in the experiment (figure 2(b)). The materials parameters used are the typical 

values for permalloy [23]: exchange stiffness 𝐴 = 1.3 × 10−11 𝐽/𝑚, saturation magnetization 

𝑀𝑠 = 800 × 103 𝐴/𝑚, damping parameter 𝛼 = 0.008, no anisotropy and the cell size of 5 × 5 ×

30 𝑛𝑚3. The position of the vortex core was determined by fitting a Gaussian through the Mz 

component of the magnetization [24]. 

Figure 4: Micromagnetic simulations of DW dynamics at zero-field, comparing the velocity 

profiles of two different magnetic configurations where the DWs have the same (Top) and 

opposite chiralities (Bottom). Panels (a, b) and (c, d) show the DW velocities plotted as a function 

of the azimuthal angle and time for the automotive propagation of two vortex walls with the same 

and opposite chirality, respectively. The averaged annihilation area where DWs getting close 

enough is indicated in purple. Blue and red arrows indicate the propagation direction of the DWs. 

Insets in (a) and (d) show the spin structure of the 400 nm ring geometry for both cases with the 

head-to-head wall on the left and tail-to-tail wall on the right. 
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Figure 4 presents the micromagnetic simulations of DW dynamics at zero-field for different DW 

spin configurations. In figure 4(a, b), the DWs have the same polarity and same chirality, mirroring 

the experimental situation shown in figure 2(a-c) whereas in figure 4(c, d), the DWs have the same 

polarities and opposite chiralities, mirroring the experimental approach of two vortex wall of 

opposite chirality shown in figure 2(d-f). Thus by comparing both experimental (figure 2(e, f)) and 

simulated (figure 4(c, d)) results, we can see that the DW automotion seen in the micromagnetic 

simulations is in good qualitative agreement with the obtained experimental results. In particular 

the results shown in figure 4(c, d) reveal that the walls experience a strong attractive interaction 

once they get very close to each other, as observed also in the experiment. This effect manifests 

itself as a dramatic increase of the DW velocity just before the annihilation process occurs in the 

narrowest part of the ring whereas for the equal chirality case (figure 4(a, b)) such a large increase 

in the velocity is not seen in either the simulations or experiment. This is due to the attractive nature 

of the short-range exchange interaction force in the case of the opposite chirality resulting of the 

detailed topological nature of the walls. In the case of equal chirality walls this interaction force is 

repulsive [28].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, many more oscillations of the velocity than in the experiment are seen in the 

micromagnetic simulation results (figure 4). This can be explained due to the fact that in our 

simulation the initial applied field is abruptly removed and hence the non-equilibrium spin structure 

Figure 5: Micromagnetic simulations for the dynamic vortex DW spin structures during the 

annihilation process, where DWs have initially the same chiralities and polarities. (a - e) snapshots 

illustrating the last 2ns before the full annihilation of the DWs. Insets in (c, d) show the gray scale 

of the corresponding snapshots which represent the out-of-plane magnetization component (Mz) 

along the Z-direction, where white (black) indicates magnetization pointing up (down). The color 

code represent the in-plane magnetization direction visualized by the small black arrows.  
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that leads then leads to velocity change (i.e. vortex core) move between the edge of the ring and 

the center-like. Furthermore, one cannot see a tight correlation between the initial wall topologies 

and the observed DW velocity profiles for large distances. This highlights that the topological 

interaction is important only for small distances between the DWs. Thus, next we focus on the 

annihilation process, where the topology of DWs is found to be important for the dynamics. 

We note that when comparing figures 2(c) and 4(c) one needs to take into account significant 

differences. Indeed Fig. 2(c) is an average of 10 billion repetitions while Fig. 4(c) is a single 

simulation at T = 0. This means Fig. 2(c) shows only the reproducible parts of the displacement. 

From the contrast we can ascertain that the motion is largely reproducible. However the very fine 

structure in Fig. 4(c) showing very fast oscillations of the DW velocity will depend strongly on 

thermal excitations and details of the exact nanoscale DW spin structure. In the experiment these 

will be invariably washed out due to the averaging process as well as the thermal excitations. 

However the general trend, namely that the velocities first go up and then go down as the two walls 

approach is a key feature which is reproduced by the simulations. 

Figure 5 shows micromagnetic simulation for the annihilation process of two vortex DWs having 

the same chirality. For this case, the closest edge defects between the two walls are along the same 

edge (inner-edge) of the nanowire [28]. In this figure we show the time resolved snapshot of 

annihilation process starting from t = 88.78 ns, which is roughly 2.6 ns before the full magnetization 

switching of the ring, from its initial onion state to the vortex state. We can see in figure 5(c) that 

at 𝑡 = 89.80 𝑛𝑠 a new vortex DW is nucleated in between the two initial vortex walls and this new 

wall has an opposite chirality to the initial walls. This nucleation phenomena is further illustrated 

in the insets of Figure 5(c, d) where the out-of-plane magnetization component (Mz) is plotted, 

where white (black) indicates magnetization pointing up (down). The arrows in the two-

dimensional schemes represent the in-plane magnetization components. In the next steps (figure 

5(d, e)) the two initial walls annihilate by being expelled from the same edge (outer-edge) of the 

nanowire, whereas the new vortex wall moves down and is expelled later (at 𝑡 = 91.30 𝑛𝑠 not 

shown). 

Now, we compare this result to the annihilation process for the case of the vortex walls with 

opposite chiralities, presented in figure 6, where the closest edge defects are on opposite edges of 

the ring. Here, the annihilation process starts by annihilation of both adjacent edge defects located 

on the outer and inner ring edge followed by the nucleation of a new vortex core and antivortex 

core pair at 𝑡 = 109 𝑛𝑠 as shown, in detail, in Fig. 6(c, d). It is worth mentioning that the nucleated 

vortex DW has the same chirality as the left initial wall. Therefore, both walls experience a 

repulsive force due to their topology (same chirality) with the new vortex wall slightly pushed 

toward the outer ring edge as seen in (Fig. 6(d, e)). Afterwards in the next two subsequent snapshots 

(figure 6(e, f)) both walls annihilate by being expelled from the same ring edge (outer-edge) 

(similar to the previous case since both walls exhibit the same chirality), whereas the second initial 

vortex wall with opposite chirality is expelled just before from the opposite edge (inner-edge).  
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IV. Discussion 

Our first surprising experimental observation of DW automotion (with an averaged velocity of ~ 

60 m/s), in which the wall inertia is able to overcome  both the repulsive topological force between 

the walls with the same chirality [28] and the barrier potential resulting from the unavoidable 

sample imperfections that pin the wall, has not been previously observed. We explain the 

underlying mechanisms of this behavior by considering the forces that act on the vortex DW spin 

structure.  

For the sake of simplicity, we treat the DW as exhibiting point-particle behavior, and, consequently 

we can describe it by one single coordinate (the vortex core position). There are four forces acting 

on the vortex DW, one of which is a radial restoring force and the other three are tangential forces, 

which act as azimuthal driving forces. 

Firstly the long-range attractive interaction between the walls, at large separation, is purely 

magnetostatic and largely independent of the chiral character of the DWs. In nanowires, the DWs 

in the long distance limit can be considered as free magnetic monopoles carrying a single opposite 

magnetic charge, with adjacent walls (head-to-head and tail-to-tail DWs) always having opposite 

charges [28].  

Figure 6: Micromagnetic simulation of the dynamic vortex DW annihilation process, where DWs 

have initially opposite chiralities and the same polarity. (a - e) panels illustrate the last 6 snapshots 

before the full annihilation of the DWs. The color code represents the in-plane magnetization 

direction visualized by the small black arrows. Insets in (c - f) show the gray scale of the 

corresponding snapshots which represent the out-of-plane magnetization component (Mz), 

where white (black) indicates magnetization pointing up (down). The color scale, in the close-up 

inset in (d) top, indicates the out-of-plane magnetization component, red (blue) indicates 

magnetization pointing up (down). 
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Thus, the two walls always experience an attractive force (similar to the Coulomb force), pushing 

the walls towards each another, as is clear from the electrostatic analogy [29]. The relevant energy 

is mainly determined by the magnetic charge of the DWs which serve as sources of stray fields. 

Moreover, the interaction between walls (through stray fields) has a dipolar nature with the energy 

decreasing monotonically when the walls start to move towards one another. Hence, the resulting 

force is inversely proportional to the separation [28]. 

The second force that acts on the DW is the force resulting from the asymmetrical shape of our 

ring structure. As mentioned above, this force results from the spatially inhomogeneous potential 

landscape of the DW energy (Fig. 1), in the asymmetric ring landscape with a minimum and 

maximum in the narrowest and the widest part, respectively. The DW potential landscape has a 

spatial dependence due to the exchange and dipolar energy variations in the DW spin structure and 

thus it depends on the local ring width. This is demonstrated in Figure 7, where we show the 

contribution to the DW energy at zero field in 500 nm asymmetric rings. At zero field the DW 

energy consists only of the sum of the exchange energy and dipolar energy (in zero magneto 

crystalline anisotropy permalloy). The energies are obtained from micromagnetic calculations, by 

mirroring the DW along the ring to different positions. We can infer from the graphs in figure 7(b) 

that the DWs’ energies scale with the width of the structure, demonstrating that the potential 

landscape can be tailored by the geometry. This force is therefore classified as a local and short 

range-force, proportional to the width-gradient in the ring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: (a) Calculated distance between vortex cores plotted as a function of time (before the 

annihilation at t = 0 ns) for both studied cases in Fig. 5 and Fig. 6 where the vortex walls have 

same and opposite chirality, respectively. (b) Contributions to the DW energy at zero field 

(exchange + magnetostatic energies) in 500 nm asymmetric rings plotted as a function of DW 

position. The black and red curves correspond to the head-to-head (HH) and tail-to-tail (TT) vortex 

wall with a starting or initial angle at 𝟎° and 𝟏𝟖𝟎°, respectively. The energies are obtained from 

micromagnetic calculations, by propagating the DW along the ring with a field pointing along 

different directions.  
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The third force that acts on the DW is the force resulting from the short-range interactions, arising 

when the separation, d, between DWs become small. Contrary to the long-range attractive 

interaction force, this force depends on the detailed topological nature of the DWs (chirality) [28]. 

This leads to a repulsive or attractive interaction depending on whether the two vortex walls have 

the same or opposite chirality, respectively. This effect can be understood by considering the spin 

structure of the vortex walls, as discussed in Ref. [28]. For instance, in vortex DWs with the same 

chirality the spins between the two walls cannot continuously rotate, since the spins at both sides 

of the domain are anti-parallel. This leads to an increase of the exchange energy which opposes a 

further approach of both walls toward each another. In contrast for vortex walls carrying opposite 

chirality, the magnetization can rotate continuously since spins at both sides of the domain are 

parallel. Therefore these interaction forces are a consequence of topological edge defects. 

Finally the radial force that acts on the vortex wall is the restoring force, resulting from the shape 

anisotropy, which pushes the vortex core toward the center of the nanowire and this depends on 

the radial vortex core position as well as the ring width and material. 

Taking into account our experimental observations, we can conclude that automotive DW 

dynamics is mostly governed by the competition between local forces arising from the 

inhomogeneous potential landscape and the long-range interaction between walls for large 

distances ( > 1 m). Since automotive DW motion always occurs toward the narrowest part of ring, 

we conclude that the long-range interaction between walls is smaller than the local forces from the 

inhomogeneous potential landscape. On the other hand, when two DWs approach each other, their 

mutual interaction becomes more important and this is governed by the topology of both DWs. 

This effect is revealed in figure 7(a) which presents the calculated distance between vortex cores 

plotted as a function of time for the two studied cases presented in figure 5 and figure 6, where the 

vortex walls have the same and opposite chirality, respectively. We can clearly infer from the graph 

that during the annihilation process the initial vortex DWs having the opposite chirality approach 

each other closer and faster than the case where the vortex DWs have the same chiralities. However, 

since we always observe annihilation and switching to the vortex state it is clear that the inertia of 

the walls is sufficient to overcome any barriers towards annihilation and thus robust switching is 

observed. 

 

V. Conclusion 

In summary, we have directly imaged DW automotion in asymmetric curved nanowires at zero 

field. We have demonstrated that automotive propagation occurs due to the influence of the 

demagnetization and exchange energy present in the structures. This automotion is driven by the 

interaction between the DWs spin structures, which depends on the topology of the system and by 

the energy gradient associated with the spin structure energy change when the geometry changes.  

The pump and probe experiment of DW propagation at zero field revealed DW automotion with 

an average velocity of about ~ 60 m/s, which is a significant speed for spintronic devices based on 
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DW dynamics. We demonstrate that the DW inertia and the stored energy allows the walls to 

overcome both the local extrinsic pinning and the topological repulsion between DWs carrying the 

same winding number (vortex chirality), thus leading to robust switching from the onion to the 

vortex state. 

Finally, we present a systematic micromagnetic simulation study of DW motion at zero-field in 

400 nm asymmetric rings with the wall possessing different topological character. By performing 

a series of micromagnetic simulations on defect-free systems, we demonstrate that the DW 

automotion and annihilation is always present, and the results showed good quantitative agreement 

with our experimental results. Moreover we demonstrate that the detailed topological nature of the 

walls only influences the DW dynamics on a local scale without inhibiting the annihilation of DWs 

through automotion. These findings shed light on a robust and reliable switching process involving 

the onion state in ferromagnetic rings, which paves the way for further optimization of these 

devices. By increasing the width gradient of the system by modifying its geometry, consequently 

higher speeds of the switching process can be achieved.  
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