980 research outputs found
The effects of memantine on prepulse inhibition.
Reduced prepulse inhibition (PPI) of startle provides evidence of deficient sensorimotor gating in several disorders, including schizophrenia. The role of NMDA neurotransmission in the regulation of PPI is unclear, due to cross-species differences in the effects of NMDA antagonists on PPI. Recent reports suggest that drug effects on PPI differ in subgroups of normal humans that differ in the levels of baseline PPI or specific personality domains; here, we tested the effects of these variables on the sensitivity of PPI to the NMDA antagonist, memantine. PPI was measured in male Sprague-Dawley rats, after treatment with memantine (0, 10 or 20 mg/kg, s.c.). Baseline PPI was then measured in 37 healthy adult men. Next, subjects were tested twice, in a double-blind crossover design, comparing either (1) placebo vs 20 mg of the NMDA antagonist memantine (n=19) or (2) placebo vs 30 mg memantine (n=18). Tests included measures of acoustic startle amplitude, PPI, autonomic indices and subjective self-rating scales. Memantine had dose- and interval-dependent effects on PPI in rats. Compared with vehicle, 10 mg/kg increased short-interval (10-20 ms) PPI, and 20 mg/kg decreased long-interval (120 ms) PPI. In humans, memantine caused dose-dependent effects on psychological and somatic measures: 20 mg was associated with increased ratings of happiness, and 30 mg was associated with increased ratings of dizziness. PPI at the 120 ms prepulse interval was increased by 20 mg, but not 30 mg of memantine. Subgroups most sensitive to the PPI-enhancing effects of memantine were those with low baseline PPI, or with personality scale scores suggestive of high novelty seeking, high sensation seeking, or high disinhibition. NMDA blockade with memantine appears to have dose- and interval-dependent effects on sensorimotor gating in rats and humans, particularly among specific subgroups of normal human subjects. These findings are discussed as they relate to consistencies across other studies in humans, as well as apparent inconsistencies in the NMDA regulation of PPI across species
Selfish Dark Matter
We present a mechanism where a particle asymmetry in one sector is used to
generate an asymmetry in another sector. The two sectors are not coupled
through particle number violating interactions and are not required to be in
thermal contact with each other. When this mechanism is applied to baryogenesis
in asymmetric dark matter models, we find that the dark matter particles can be
extremely light, e.g. much lighter than an eV, and that in some cases there is
no need to annihilate away the symmetric component of dark matter. We discuss a
concrete realization of the mechanism with signals in direct detection, at the
LHC, at -factories or future beam dump experiments.Comment: 18+5 pages, 2 figures; Journal version: Added references, small
changes to the free-streaming length estimate
Linear Categorical Marginal Modeling of solicited symptoms in vaccine clinical trials
Analysis of the occurrence of adverse events, and in particular of solicited symptoms, following vaccination is often needed for the safety and benefit-risk evaluation of any candidate vaccine, and typically involves taking repeated measurements. In this article, it is shown that Linear Categorical Marginal Models (LCMMs) are well suited to take into account the dependencies in the data arising from the repeated measurements and provide detailed and useful information for comparing safety profiles of different products while remaining relatively easy to interpret. LCMMs are presented and applied to a Phase III clinical trial of a candidate meningococcal pediatric vaccine
Binary Models for Marginal Independence
Log-linear models are a classical tool for the analysis of contingency
tables. In particular, the subclass of graphical log-linear models provides a
general framework for modelling conditional independences. However, with the
exception of special structures, marginal independence hypotheses cannot be
accommodated by these traditional models. Focusing on binary variables, we
present a model class that provides a framework for modelling marginal
independences in contingency tables. The approach taken is graphical and draws
on analogies to multivariate Gaussian models for marginal independence. For the
graphical model representation we use bi-directed graphs, which are in the
tradition of path diagrams. We show how the models can be parameterized in a
simple fashion, and how maximum likelihood estimation can be performed using a
version of the Iterated Conditional Fitting algorithm. Finally we consider
combining these models with symmetry restrictions
Measurement of the solenoid magnetic field
We describe the machine used to map the solenoid field and the data sets that were collected. The bulk of the note describes the analysis of this data. A series of small corrections are made; some taken from surveys and some derived from the data itself. Two fitting methods are defined and applied to all data sets. The final result is that the field map at normal operating current can be fitted to a function that obeys Maxwell with an r.m.s. residual of less than 5 Gauss. Systematic errors on the measurement of track sagitta due to the field uncertainty are estimated to be in the range 2.3E-4 to 12E-4, depending on the track rapidity. Finally, the representation of the map in Athena is briefly described
Measurement of the CMS Magnetic Field
The measurement of the magnetic field in the tracking volume inside the
superconducting coil of the Compact Muon Solenoid (CMS) detector under
construction at CERN is done with a fieldmapper designed and produced at
Fermilab. The fieldmapper uses 10 3-D B-sensors (Hall probes) developed at
NIKHEF and calibrated at CERN to precision 0.05% for a nominal 4 T field. The
precise fieldmapper measurements are done in 33840 points inside a cylinder of
1.724 m radius and 7 m long at central fields of 2, 3, 3.5, 3.8, and 4 T. Three
components of the magnetic flux density at the CMS coil maximum excitation and
the remanent fields on the steel-air interface after discharge of the coil are
measured in check-points with 95 3-D B-sensors located near the magnetic flux
return yoke elements. Voltages induced in 22 flux-loops made of 405-turn
installed on selected segments of the yoke are sampled online during the entire
fast discharge (190 s time-constant) of the CMS coil and integrated offline to
provide a measurement of the initial magnetic flux density in steel at the
maximum field to an accuracy of a few percent. The results of the measurements
made at 4 T are reported and compared with a three-dimensional model of the CMS
magnet system calculated with TOSCA.Comment: 4 pages, 5 figures, 15 reference
Музичні жанри: класифікаційні проблеми
Music genres – one of the main terms of the theoretical music studies and music practice, which reflect àesthetic and regulative constants of the music art. The music genres belong to the most important communicative-semantic basics of the artistic systems. This article is an attempt to figure out regulative basics for the development of the music genre theory
Measurement of the ATLAS solenoid magnetic field
ATLAS is a general purpose detector designed to explore a wide range of physics at the Large Hadron Collider. At the centre of ATLAS is a tracking detector in a 2 T solenoidal magnetic field. This paper describes the machine built to map the field, the data analysis methods, the final results, and their estimated uncertainties. The remotely controlled mapping machine used pneumatic motors with feedback from optical encoders to scan an array of Hall probes over the field volume and log data at more than 20 000 points in a few hours. The data were analysed, making full use of the physical constraints on the field and of our knowledge of the solenoid coil geometry. After a series of small corrections derived from the data itself, the resulting maps were fitted with a function obeying Maxwell's equations. The fit residuals had an r.m.s. less than 0.5 mT and the systematic error on the measurement of track sagitta due to the field uncertainty was estimated to be in the range 0.02 % to 0.12 % depending on the track rapidity
- …
