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Abstract

We report on the hexagonally shaped toroidal air-core magnet used in the magnetic
spectrometer of the CHORUS experiment at CERN. The novel and unique features of this
magnet are the radially-constant field over its entire volume, with field lines straight and parallel
to the hexagonal sides, and the negligibly small field-free region along its central axis. A
detailed description of its construction and performance is given.
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1 INTRODUCTION

The CHORUS Collaboration has constructed a new detector for the study of neutrino
oscillations [1]. Part of this detector is a magnetic spectrometer for the charge determination of
low-energy particles of neutrino-induced events.

The magnetic spectrometer consists of a hexagonal toroidal air-core magnet, developed,
designed, and constructed at CERN. It is preceded and followed by scintillating fibre tracker
planes adapted to the special geometry of the magnetic field. The following gives a detailed
description of this hexagonal magnet.

2 GENERAL DESCRIPTION OF THE MAGNET

The magnetic spectrometer of the CHORUS detector needed to have the following
features:

• a toroidal magnet of large area, determined by the dimensions of the neutrino target
• a negligibly small field-free region along the central axis
• a minimal amount of material in the passage of traversing particles
• easy particle tracking with tracker planes close to the magnetic volume.
The above requirements were met by a hexagonal air-core magnet, composed of regular

triangular sectors. The windings in each of these sectors are equidistant and orthogonal to the
polygon side for the front and back faces, and parallel to the axis for the other planes. Figure 1
shows schematically the winding arrangement.

Fig. 1 Scheme of a toroidal sector

A toroidal magnet arranged in such sectors has novel and unique features:
• its field is constant over the entire volume (no radial dependence)
• the field lines in each sector are straight and parallel to the outer side of the polygon
• along the axis  it has nearly no region with zero magnetic field
• only small regions along the diagonals are filled with material.
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These specific properties hold for any polygonal toroidal magnet with the same-type
winding arrangement. Its field can easily be calculated*.

Figure 2 shows an overall view of the CHORUS hexagonal magnet.

Fig. 2 The hexagonal magnet

The magnet is of a compact design. The conductors are made of Al-alloy 2.5 mm thick,
representing just a few per cent radiation length for particles traversing the magnetized volume.
Only the diagonal planes, where the conductors between the front and back faces are fixed to
the support sheets, are of material all along the axial depth of the magnet. Its azimuthal
thickness is about 11 mm.

The tracking in the target region of the CHORUS detector and at the magnetic
spectrometer is performed by planes with straight scintillating fibres of 500 µm diameter,
viewed at one end by chains of image intensifiers. The compact arrangement of the magnet
conductors prevents any field leakage to the outside of the front and back faces of the magnet
that could influence the nearby image intensifiers. A small leakage of 2 to 4 G at the hexagon
sides arising from the cross conductors between the front and back faces is stopped by a
3 mm-thick ARMCO sheet around the outer diameter of the support frame.

-------------------------
*Any sector-shaped winding of this type creates a uniform field if the radial planes limiting the sector are

kept at the same magnetic potential, for instance by means of flat iron polar faces connected by a return
yoke. It is trivial in this case to verify that the acting ampere turns are increasing linearly from the sector
vertex towards the outer edge, corresponding to the equal increase of the air-path length between the
polar faces.
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The neutrino beam is pulsed with two pulses of 6 ms length every 14.4 s. Operating the
magnet in a pulsed mode, greatly reduces the average power dissipated in the windings and
permits simple air flow cooling instead of the more risky and complicated water cooling (see
Section 4).

The main parameters of the magnet are summarized in Table 1.

Table 1

Hexagon side length

Axial length

Conductor material

Conductor thickness at front & back face

Conductor width at front & back face

Radius of front & back face curvature

Magnetic inductance

Total number of turns

Maximum current

Voltage at maximum current

Effective pulse length

Flat top length

Effective power (2 pulses / 14.4 s)

Ohmic resistance

Inductance

Stored energy

Cooling

Conductor mass

Total mass (including support frame,

shielding, cooling ducts, etc.)

1.5 m

0.75 m

E – Al Mg Si 0.5 (DIN)

2.5 mm (total: 5.6 % rad. length)

32 mm

3550 mm

1180 G

264

3200 A

720 V

~ 55 ms

~ 12 ms

~ 17 kW

215 mΩ
4.5 mH

25 kJ

Forced air circulation inside magnet

~ 450 kg

2300 kg

3 CONSTRUCTION DETAILS

The  magnet is mounted in two large discs of Al-alloy of 3.6 m diameter with a
hexagonal cut-out that act as a general support frame. Stainless steel sheets 2 mm thick and of
890 mm axial width are fixed along the diagonals of the hexagon, and pre-stressed by means of
calibrated spring washers to 7 t a sheet. They are constructed in three V-shaped sheets and
welded at the centre onto a small star-shaped rod, forming six identical triangular sectors. Detail
A of Fig. 3 shows an enlargement of this region.
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Fig. 3 Details of the conductor and winding arrangement

Both sides of the stainless steel sheets are covered with a 2 mm-thick glass-fibre epoxy
plate to build up an insulating sandwich. The conductors of neighbouring triangles are
symmetric to the diagonal plane and fixed together onto this insulating sandwich with glass-
fibre M8 screws. The conductors and winding arrangement of the magnet are enlarged in
Fig. 3.

A conductor is made of a 2.5 mm-thick band of E–Al Mg Si 0.5 (DIN) alloy (trade
name: Anticorodal 041), which combines high electric conductivity with good mechanical
properties. It is bent in a symmetric U-shape and the two vertical arms of the U form the 32
mm-wide conductor at the front and back face, while the base of the U is given by the 64 mm-
wide and tilted part of the conductor, fixed to the insulating sandwich sheet at the diagonal plane
(detail B of Fig. 3). Neighbouring U-shaped conductors of one triangular sector of the hexagon
are separated by a gap of 2 mm and connected in a series by a solid cross conductor of
50 × 15 mm2 at the side of the triangle (detail C of Fig. 3). In this way, all conductors in a
triangle form together a solenoid of varying cross section. Neighbouring triangle solenoids are
in turn connected in a series to form the total toroid. At the front and back faces an H-shaped
rubber profile was inserted into the 2 mm gap between neighbouring conductors in order to



5

avoid any electrical contact between them during pulsing, and to seal the front and back faces
towards the air cooling flow (see Section 4).

The electromagnetic forces which stress and deform the winding when it is pulsed have
three contributions. The largest contribution is from the action of the magnetic field on the
conductors situated at the front and back faces. At the maximum current of 3200 A the
magnetic forces act with a pressure of 0.58 N/cm2 and bend these conductors towards the
outside. The conductors hoop stresses  are proportional to the radius of their curvature and lead
to a resultant radial force directed outwards, which is supported by the stainless-steel sheet
placed in the diagonal planes. The axial part of the U-shaped conductors is pushed by the field
with a force having a radial inward component plus a component perpendicular to, and
towards, the radial support plane. The total force resulting from these three contributions is up
to about 4 t for each radial plane and is directed outwards. The forces acting on the solid cross
conductors at the hexagon sides are also directed outwards and absorbed by the supporting
structure. Whereas these last forces are easily absorbed without any periodical deformation, the
previous forces, due to the thinness of the conductors, produce small elastic deformations
during the pulses (see Section 5).

To keep these movements reasonably small and to avoid any asymmetry, the diagonal
stainless-steel sheets were spring loaded and pre-stressed with 7 t after compensation of the
weight of the inner part of the magnet. For this purpose, the two upper hexagon corners are
provided with adjustment devices which permit the magnet geometry to be corrected prior to
the pre-stressing by compensating the gravity forces acting on it.

4 PULSING, COOLING AND MONITORING

The requirement of minimal material thickness for traversing particles at a relatively high
field with periodically acting forces led to the choice of E–Al Mg Si 0.5 as the conductor
material; it has good mechanical properties and its specific resistivity is 30 mΩ mm2/m. To
assure the quality of the numerous contacts (two for each turn), as is usual for Al conductors all
contact surfaces between the U-shaped conductors and the solid cross-bars were gold plated.
The resulting total ohmic resistance of the winding is 215 mΩ.

As stated earlier, the magnet is pulsed in accordance with the neutrino beam, with two
pulses spaced by 2.8 s within 14.4 s. The maximum magnetic field has to be stable during the
6-ms period of the neutrino ejection. This was achieved by choosing a flat top of 12 ms for the
magnet. Furthermore, to keep the ohmic heat losses as small as possible, the rectifier is pulsed
with an over-voltage in order to quickly reach the flat top of the pulse. Thus the pulse overall
rise time could be reduced to 50 ms. The fall time is given by the discharge time with a time
constant of 30 ms. The effective duty cycle of the magnet is therefore ~ 0.8% and the
corresponding ohmic heat losses are ~17 kW.

Owing to the symmetry the magnetic field is equal in all magnet sectors. It is monitored
in three of the sectors by Hall probes read out together with the neutrino data. Figure 4 shows
the pulsed magnetic field as seen by one of the probes.



6

Fig. 4  Hall probe signal of magnetic field pulse,
horizontal scale: 20 ms/div.,
vertical scale: 400 Gauss/div.

The ohmic losses are mainly produced in the thin U-shaped conductors, i.e. in the front
and back faces of the magnet and in its radial planes. Owing to the immediate proximity of the
fibre tracker planes at both sides of the magnet the cooling by air of the front and back faces can
be done only from inside the magnet. Outside these faces, 2 mm-thick polycarbonate discs are
fixed to the diagonals and sealed at the ARMCO shielding in order to fully separate thermally
the magnet from the detector planes, as indicated in Fig. 3.

The cooling is achieved by a dedicated cooling unit, equipped with a pulsion and
extraction fan. It creates a total air flow of ~ 2 m3/s. This air flow is divided into six equal
streams, one for each triangular sector. As can be seen from Fig. 3, for each sector the flow of
cold air passes the cross conductors with the help of a thin walled polycarbonate tube, is led to
its centre and guided with deflector sheets along the inside surfaces. The warm air leaves a
sector by passing between the cross conductors in the area not occupied by the inlet tube. It is
extracted above each of the six diagonal planes, re-collected, and fed back into the cooling unit
without heating up any other part of the detector. To allow for the easy passage of air, the solid
cross conductors connecting the thin U-shaped conductors are only 15 mm wide for a centre-
to-centre spacing of 34 mm.

When the magnet is pulsed the thin front and back face conductors move under the action
of the electromagnetic forces. At a maximum current of 3200 A the centre of the longest
conductors will swing outwards by 2 to 2.5 mm. The swing of the shorter conductors is
accordingly smaller. The magnet thereby acts as a sound generator, similar to a big drum. For
normal operation the measured sound level is 75 dB(A) at a distance of 30 cm from the
magnets front face. Its frequency spectrum ranges from about 30 to 250 Hz with a maximum
at around 80 Hz. The noise level of the cooling system itself is about 73 dB(A).

To reduce the ageing of nearby CHORUS detector elements (nuclear emulsions and
scintillating fibres) and to run the image intensifiers at a lower noise level, the hexagonal
magnet is placed together with these elements in a cool box and kept permanently at 5°C. The
temperature of the air blown onto the hexagonal magnet is 4°C. Under pulsing conditions the
outlet air has a maximum temperature of 10°C.
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The maximum instantaneous ohmic loss at full magnet current amounts to ~ 2.2 MW. It
is therefore necessary to carefully control the value of the magnet duty cycle and to monitor the
magnet temperature. Consequently, thermo-switches and thermistors are fixed onto some of
the conductors at the front and back faces of each magnet sector and interlocked with the power
supply. The temperature of the longest of these conductors rises under normal pulsing
conditions to ~ 25°C. Two series of thermo-switches are provided that open respectively at
60°C and 80°C. On reaching the limiting temperature, the 60°C switches stop the rectifier from
pulsing, and the 80°C ones switch off the rectifier supply voltage. Finally, the pulse frequency
and the pulse lengths of the rectifier are limited electronically.

5 MATERIAL FATIGUE

The CHORUS experiment will take data during two years of 200 running days each. The
magnet pulsed with the neutrino beam will therefore ideally undergo approximately
5 × 106 cycles.

The pulsed magnetic field inside the toroid will periodically deform the thin conductors at
the front and back faces. This can lead to rupture of the conductors due to material fatigue. The
problem of conductor fatigue has been studied and optimized by finite element analysis and
verified experimentally on a number of conductors of shape similar to that in the magnet. The
test conductors have been pulsed with current in an external constant magnetic field in order to
produce approximately the same stress conditions as in the real pulsed magnet*. The highest
risk for material fatigue is in the bent corners of the U-shaped conductors. To reduce this risk,
the corners are bent with a inner radius of R = 6 mm, and the front and back part of the
conductors are pre-formed with a radius of R = 3550 mm, as indicated in Fig. 3. This value
was chosen as a compromise between the need to limit the stress and the wish to maximize the
B·l value in the restricted space. With the above chosen parameters the maximum effective
stress at the critical corners can be reduced to ~ 32 N/mm2, which is about half the value of
70 N/mm2 for 107 alternating traction cycles given for this Al-alloy in the material properties
table under the ideal conditions of a test specimen.

The hoop stress created by the electromagnetic forces is the same for all front and back
face conductors. But in the critical region it produces an elastic deformation proportional to the
conductor length — mainly at the bend and its fixation to the diagonal sheet. As a result, the
conductors will swing outwards under the magnetic pressure with an amplitude proportional to
their length. This swing is 2 to 2.5 mm for the longest conductors. In addition, micro cracks
due to the bending, with R = 6 mm and opening up under the periodic action of the magnetic
pressure cycle, could reduce the theoretical maximum stress value considerably. It is therefore
impossible to give a confident number for the probable lifetime under running conditions due
to several uncertainties that include: precise fatigue fracture values for this Al-alloy, residual
stresses after the bending process, and the elastic behaviour of the entire magnet. One can only
say that its lifetime is limited.

------------------------
* In the real case the stresses are proportional to I2, where I is the current in the conductor; in the fatigue

tests they were only proportional to I. The maximum stress in the tests was however higher than in the
real case.
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In order to keep the magnet cycles to a strict minimum the magnet is pulsed only when
data are recorded in the CHORUS detector. The magnet has undergone about 1.2 × 106 cycles
in the first year of the CHORUS experiment running.
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