6,960 research outputs found
Can interference patterns in the reflectance spectra of GaN epilayers give important information of carrier concentration?
Low-temperature reflectance spectra of a series of Si-doped GaN epilayers with different doping concentrations grown on sapphire by metal-organic chemical vapour deposition were measured. In addition to the excitonic polariton resonance structures at the band edge, interference oscillating patterns were observed in the energy region well below the band gap. The amplitudes of these oscillation patterns show a distinct dependence on the doping concentrations of the samples. From the thin-film optical interference principle, an approach connecting the amplitude of the interference oscillations and the impurity scattering was established. Good agreement between experiment and theory is achieved. © 2012 American Institute of Physics.published_or_final_versio
Persistent spin current in mesoscopic ferrimagnetic spin ring
Using a semiclassical approach, we study the persistent magnetization current
of a mesoscopic ferrimagnetic ring in a nonuniform magnetic field. At zero
temperature, there exists persistent spin current because of the quantum
fluctuation of magnons, similar to the case of an antiferromagnetic spin ring.
At low temperature, the current shows activation behavior because of the
field-induced gap. At higher temperature, the magnitude of the spin current is
proportional to temperature T, similar to the reported result of a
ferromagnetic spin ring.Comment: 6 pages, 3 figures, one more reference adde
Interaction of Individual Skyrmions in Nanostructured Cubic Chiral Magnet
We report the direct evidence of field-dependent character of the interaction
between individual magnetic skyrmions as well as between skyrmions and edges in
B20-type FeGe nanostripes observed by means of high resolution Lorentz
transmission electron microscopy. It is shown that above certain critical
values of external magnetic field the character of such long-range skyrmion
interactions change from attraction to repulsion. Experimentally measured
equilibrium inter-skyrmion and skrymion-edge distances as function of applied
magnetic field shows quantitative agreement with the results of micromagnetic
simulations. Important role of demagnetizing fields and internal symmetry of
three-dimensional magnetic skyrmions are discussed in details.Comment: accepted in PR
Control interface concepts for CHARA 6-telescope fringe tracking with CHAMP+MIRC
This is the author accepted manuscript. The final version is available from SPIE via the DOI in this record.Cophasing six telescopes from the CHARA array, the CHARA-Michigan Phasetracker (CHAMP) and Michigan Infrared Combiner (MIRC) are pushing the frontiers of infrared long-baseline interferometric imaging in key scientific areas such as star- and planet-formation. Here we review our concepts and recent improvements on the CHAMP and MIRC control interfaces, which establish the communication to the real-time data recording & fringe tracking code, provide essential performance diagnostics, and assist the observer in the alignment and flux optimization procedure. For fringe detection and tracking with MIRC, we have developed a novel matrix approach, which provides predictions for the fringe positions based on cross-fringe information.This work was performed in part under contract with the California Institute of Technology
(Caltech) funded by NASA through the Sagan Fellowship Program
Through Their Lens: The Potential of Photovice for Documentation of Environmental Perspectives among Kenyan Teachers
This study explores the potential of photovoice for understanding environmental perspectives of teachers in the Narok District of Kenya. The objective of this paper is to share this photo-methodology with environmental educators so they may use it as an innovative methodological tool to understand the construction of environmental perspectives. The researchers analyzed the digital images and the accompanying narratives for themes emerging for each of the key terms. The researchers utilized Critical Visual Methodology to guide the data analysis. Each photograph was coded according to its site of audiencing (including both compositionality and social modalities). The themes - shares local knowledge, documents context, documents knowledge emerged from the participants’ photovoice. The researchers theorize this tool illustrated the ways in which this community valued the environment, their community, and the ways in which they conceptualize the solutions
Hadron widths in mixed-phase matter
We derive classically an expression for a hadron width in a two-phase region
of hadron gas and quark-gluon plasma (QGP). The presence of QGP gives hadrons
larger widths than they would have in a pure hadron gas. We find that the
width observed in a central Au+Au collision at
GeV/nucleon is a few MeV greater than the width in a pure hadron gas. The part
of observed hadron widths due to QGP is approximately proportional to
.Comment: 8 pages, latex, no figures, KSUCNR-002-9
An Efficient OpenMP Loop Scheduler for Irregular Applications on Large-Scale NUMA Machines
International audienceNowadays shared memory HPC platforms expose a large number of cores organized in a hierarchical way. Parallel application programmers strug- gle to express more and more fine-grain parallelism and to ensure locality on such NUMA platforms. Independent loops stand as a natural source of paral- lelism. Parallel environments like OpenMP provide ways of parallelizing them efficiently, but the achieved performance is closely related to the choice of pa- rameters like the granularity of work or the loop scheduler. Considering that both can depend on the target computer, the input data and the loop workload, the application programmer most of the time fails at designing both portable and ef- ficient implementations. We propose in this paper a new OpenMP loop scheduler, called adaptive, that dynamically adapts the granularity of work considering the underlying system state. Our scheduler is able to perform dynamic load balancing while taking memory affinity into account on NUMA architectures. Results show that adaptive outperforms state-of-the-art OpenMP loop schedulers on memory- bound irregular applications, while obtaining performance comparable to static on parallel loops with a regular workload
Spectral and spatial imaging of the Be+sdO binary phi Persei
The rapidly rotating Be star phi Persei was spun up by mass and angular
momentum transfer from a now stripped-down, hot subdwarf companion. Here we
present the first high angular resolution images of phi Persei made possible by
new capabilities in longbaseline interferometry at near-IR and visible
wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the
CHARA Array. Additional MIRC-only observations were performed to track the
orbital motion of the companion, and these were fit together with new and
existing radial velocity measurements of both stars to derive the complete
orbital elements and distance. The hot subdwarf companion is clearly detected
in the near-IR data at each epoch of observation with a flux contribution of
1.5% in the H band, and restricted fits indicate that its flux contribution
rises to 3.3% in the visible. A new binary orbital solution is determined by
combining the astrometric and radial velocity measurements. The derived stellar
masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf
secondary, respectively. The inferred distance (186 +- 3 pc), kinematical
properties, and evolutionary state are consistent with membership of phi Persei
in the alpha Per cluster. From the cluster age we deduce significant
constraints on the initial masses and evolutionary mass transfer processes that
transformed the phi Persei binary system. The interferometric data place strong
constraints on the Be disk elongation, orientation, and kinematics, and the
disk angular momentum vector is coaligned with and has the same sense of
rotation as the orbital angular momentum vector. The VEGA visible continuum
data indicate an elongated shape for the Be star itself, due to the combined
effects of rapid rotation, partial obscuration of the photosphere by the
circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne
Portable Inter-workgroup Barrier Synchronisation for GPUs
Despite the growing popularity of GPGPU programming, there is not yet a portable and formally-specified barrier that one can use to synchronise across workgroups. Moreover, the occupancy-bound execution model of GPUs breaks assumptions inherent in traditional software execution barriers, exposing them to deadlock. We present an occupancy discovery protocol that dynamically discovers a safe estimate of the occupancy for a given GPU and kernel, allowing for a starvation-free (and hence, deadlock-free) inter-workgroup barrier by restricting the number of workgroups according to this estimate. We implement this idea by adapting an existing, previously non-portable, GPU inter-workgroup barrier to use OpenCL 2.0 atomic operations, and prove that the barrier meets its natural specification in terms of synchronisation.
We assess the portability of our approach over eight GPUs spanning four vendors, comparing the performance of our method against alternative methods. Our key findings include: (1) the recall of our discovery protocol is nearly 100%; (2) runtime comparisons vary substantially across GPUs and applications; and (3) our method provides portable and safe inter-workgroup synchronisation across the applications we study
- …
