15 research outputs found
Regulation of stearoyl-CoA desaturase 1 gene expression by polyunsaturated-fatty acids and peroxisome-proliferators in the chicken
Poster *INRA Laboratoire de Génétique Animale Rennes (FRA) Diffusion du document : INRA Laboratoire de Génétique Animale Rennes (FRA)International audienc
Regulation of stearoyl-CoA desaturase 1 gene expression by polyunsaturated-fatty acids and peroxisome-proliferators in the chicken
Poster *INRA Laboratoire de Génétique Animale Rennes (FRA) Diffusion du document : INRA Laboratoire de Génétique Animale Rennes (FRA)International audienc
Locked-in syndrome after central pontine myelinolysis, an outstanding outcome of two patients
Objective: Central pontine myelinolysis (CPM) is a rare demyelinating disease that affects the pons and which can cause extreme disabilities such as locked-in syndrome (LIS) in the initial phase. The aim of the study was to describe the evolution over a 12-month period of two patients with CPM causing an initial LIS.Method: We retrospectively report the unexpected clinical outcome of these two patients in relation with the anatomical damages documented by brain MRI, associated with diffusion tensor imaging and reconstruction of corticospinal tracts in tractography. The following clinical parameters systematically assessed at 3, 6, 9, and 12 months: muscle testing on 12 key muscles (Medical Research Council), prehension metrics (box and block test and purdue pegboard), and independence for acts of daily living (functional independence measure).Results: Both patients showed a progressive recovery beginning between 2 and 3 months after the onset of symptoms, leading to almost complete autonomy at 12 months (FIM > 110), with motor strength greater than 4/5 in all joint segments (MRC > 50/60). On brain MRI with tractography, CST appeared partially preserved at pons level.Interpretation: The possibility of a near-complete functional recovery at 12 months is important to consider given the ethical issues at stake and the discussions about limiting care that may take place initially. It seems to be the consequence of reversible myelin damage combined with partially preserved neurons. Development of collateral pathways or resolution of conduction block may explain this recovery. MRI comprising DTI and tractography could play a key role in the prognosis of motor recovery
Myeloid cell differentiation arrest by miR-125b-1 in myelodysplasic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation
Most chromosomal translocations in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) involve oncogenes that are either up-regulated or form part of new chimeric genes. The t(2; 11)(p21;q23) translocation has been cloned in 19 cases of MDS and AML. In addition to this, we have shown that this translocation is associated with a strong up-regulation of miR-125b (from 6- to 90-fold). In vitro experiments revealed that miR- 125b was able to interfere with primary human CD34(+) cell differentiation, and also inhibited terminal (monocytic and granulocytic) differentiation in HL60 and NB4 leukemic cell lines. Therefore, miR-125b up-regulation may represent a new mechanism of myeloid cell transformation, and myeloid neoplasms carrying the t(2; 11) translocation define a new clinicopathological entity
PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study
Adult and child B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) differ in terms of incidence and prognosis. These disparities are mainly due to the molecular abnormalities associated with these two clinical entities. A genome-wide analysis using oligo SNP arrays recently demonstrated that PAX5 (paired-box domain 5) is the main target of somatic mutations in childhood BCP-ALL being altered in 38.9% of the cases. We report here the most extensive analysis of alterations of PAX5 coding sequence in 117 adult BCP-ALL patients in the unique clinical protocol GRAALL-2003/GRAAPH-2003. Our study demonstrates that PAX5 is mutated in 34% of adult BCP-ALL, mutations being partial or complete deletion, partial or complete amplification, point mutation or fusion gene. PAX5 alterations are heterogeneous consisting in complete loss in 17%, focal deletions in 10%, point mutations in 7% and translocations in 1% of the cases. PAX5 complete loss and PAX5 point mutations differ. PAX5 complete loss seems to be a secondary event and is significantly associated with BCR-ABL1 or TCF3-PBX1 fusion genes and a lower white blood cell count