86 research outputs found

    Different perceptions of adaptation to climate change: a mental model approach applied to the evidence from expert interviews

    Get PDF
    We argue that differences in the perception and governance of adaptation to climate change and extreme weather events are related to sets of beliefs and concepts through which people understand the environment and which are used to solve the problems they face (mental models). Using data gathered in 31 in-depth interviews with adaptation experts in Europe, we identify five basic stakeholder groups whose divergent aims and logic can be related to different mental models they use: advocacy groups, administration, politicians, researchers, and media and the public. Each of these groups uses specific interpretations of climate change and specifies how to deal with climate change impacts. We suggest that a deeper understanding and follow-up of the identified mental models might be useful for the design of any stakeholder involvement in future climate impact research processes. It might also foster consensus building about adequate adaptation measures against climate threats in a society

    Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances

    Get PDF
    A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km2) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash–Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling

    Fireshape: a shape optimization toolbox for Firedrake

    Get PDF
    Shape optimization studies how to design a domain such that a shape function is minimized. Ubiquitous in industrial applications, shape optimization is often constrained to partial differential equations (PDEs). One of the main challenges in PDE-constrained shape optimization is the coupling of domain updates and PDE-solvers. Fireshape addresses this challenge by elegantly coupling the finite element library Firedrake and the Rapid Optimization Library (ROL). The main features of Fireshape are: accessibility to users with minimal shape optimization knowledge; decoupled discretization of control and state variables; full access to Firedrake's PDE-solvers; automated derivation of adjoint equations and shape derivatives; different metrics to define shape gradients; access to ROL's optimization algorithms via PyROL. Fireshape is available at https://github.com/fireshape/fireshape. Fireshape's documentation comprises several tutorials and is available at https://fireshape.readthedocs.io/en/latest/

    Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment

    Get PDF
    Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop

    Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 1: Project framework and impacts on agriculture

    Get PDF
    Central Europe, the focus region of this study, is a region in transition, climatically from maritime to continental and politically from formerly more planning-oriented to more market-oriented management regimes, and in terms of climate change from regions of increasing precipitation in the west and north of Europe to regions of decreasing precipitation in central and southern Europe. The Elbe basin, a trans-boundary catchment flowing from the Czech Republic through Germany into the North Sea, was selected to investigate the possible impacts of global change on crop yields and water resources in this region. For technical reasons, the paper has been split into two parts, the first showing the overall model concept, the model set-up for the agricultural sector, and first results linking eco-hydrological and agro-economic tools for the German part of the basin. The second part describes the model set-up for simulating water supply and demand linking eco-hydrological and water management tools for the entire basin including the Czech part

    Therapeutic implications of improved molecular diagnostics for rare CNS-embryonal tumor entities: results of an international, retrospective study

    Get PDF
    BACKGROUND: Only few data are available on treatment-associated behavior of distinct rare CNS-embryonal tumor entities previously treated as "CNS-primitive neuroectodermal tumors" (CNS-PNET). Respective data on specific entities, including CNS neuroblastoma, FOXR2 activated (CNS NB-FOXR2), and embryonal tumor with multi-layered rosettes (ETMR) are needed for development of differentiated treatment strategies. METHODS: Within this retrospective, international study, tumor samples of clinically well-annotated patients with the original diagnosis of CNS-PNET were analyzed using DNA methylation arrays (n=307). Additional cases (n=66) with DNA methylation pattern of CNS NB-FOXR2 were included irrespective of initial histological diagnosis. Pooled clinical data (n=292) were descriptively analyzed. RESULTS: DNA methylation profiling of "CNS-PNET" classified 58(19%) cases as ETMR, 57(19%) as HGG, 36(12%) as CNS NB-FOXR2, and 89(29%) cases were classified into 18 other entities. Sixty-seven (22%) cases did not show DNA methylation patterns similar to established CNS tumor reference classes. Best treatment results were achieved for CNS NB-FOXR2 patients (5-year PFS: 63%±7%, OS: 85%±5%, n=63), with 35/42 progression-free survivors after upfront craniospinal irradiation (CSI) and chemotherapy. The worst outcome was seen for ETMR and HGG patients with 5-year PFS of 18%±6% and 22%±7%, and 5-year OS of 24%±6% and 25%±7%, respectively. CONCLUSION: The historically reported poor outcome of CNS-PNET patients becomes highly variable when tumors are molecularly classified based on DNA methylation profiling. Patients with CNS NB-FOXR2 responded well to current treatments and a standard-risk-CSI based regimen may be prospectively evaluated. The poor outcome of ETMR across applied treatment strategies substantiates the necessity for evaluation of novel treatments

    Chemokine Transfer by Liver Sinusoidal Endothelial Cells Contributes to the Recruitment of CD4+ T Cells into the Murine Liver

    Get PDF
    Leukocyte adhesion and transmigration are central features governing immune surveillance and inflammatory reactions in body tissues. Within the liver sinusoids, chemokines initiate the first crucial step of T-cell migration into the hepatic tissue. We studied molecular mechanisms involved in endothelial chemokine supply during hepatic immune surveillance and liver inflammation and their impact on the recruitment of CD4+ T cells into the liver. In the murine model of Concanavalin A-induced T cell-mediated hepatitis, we showed that hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased. Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3 accumulated within the inflamed liver tissue. In histology, CXCL9 was associated with liver sinusoidal endothelial cells (LSEC) which represent the first contact site for T-cell immigration into the liver. LSEC actively transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin- coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+ total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In contrast, CXCR3 was not involved in the endothelial transport of its ligands CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked endothelial chemokine internalization and CD4+ T-cell transmigration in vitro as well as migration of CD4+ T cells into the inflamed liver in vivo. Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated hepatitis was strongly reduced after administration of chlorpromazine. These data demonstrate that LSEC actively provide perivascularly expressed homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent intracellular transport mechanisms thereby contributing to the hepatic recruitment of CD4+ T-cell populations during immune surveillance and liver inflammation
    • 

    corecore