5,039 research outputs found

    Size of Fireballs Created in High Energy Lead-Lead Collisions as Inferred from Coulomb Distortions of Pion Spectra

    Full text link
    We compute the Coulomb effects produced by an expanding, highly charged fireball on the momentum distribution of pions. We compare our results to data on Au+Au at 11.6 A GeV from E866 at the BNL AGS and to data on Pb+Pb at 158 A GeV from NA44 at the CERN SPS. We conclude that the distortion of the spectra at low transverse momentum and mid-rapidity can be explained in both experiments by the effect of the large amount of participating charge in the central rapidity region. By adjusting the fireball expansion velocity to match the average transverse momentum of protons, we find a best fit when the fireball radius is about 10 fm, as determined by the moment when the pions undergo their last scattering. This value is common to both the AGS and CERN experiments.Comment: Enlarged discussion, new references added, includes new analysis of pi-/pi+ at AGS energies. 12 pages 5 figures, uses LaTex and epsfi

    Cooper pairing and finite-size effects in a NJL-type four-fermion model

    Full text link
    Starting from a NJL-type model with N fermion species fermion and difermion condensates and their associated phase structures are considered at nonzero chemical potential ÎŒ\mu and zero temperature in spaces with nontrivial topology of the form S1⊗S1⊗S1S^1\otimes S^1\otimes S^1 and R2⊗S1R^2\otimes S^1. Special attention is devoted to the generation of the superconducting phase. In particular, for the cases of antiperiodic and periodic boundary conditions we have found that the critical curve of the phase transitions between the chiral symmetry breaking and superconducting phases as well as the corresponding condensates and particle densities strongly oscillate vs λ∌1/L\lambda\sim 1/L, where LL is the length of the circumference S1S^1. Moreover, it is shown that at some finite values of LL the superconducting phase transition is shifted to smaller values both of ÎŒ\mu and particle density in comparison with the case of L=∞L=\infty.Comment: 13 pages, 13 figures; minor changes; new references added; version accepted to PR

    Advances in increment coring system for large tropical trees with high wood densities

    Get PDF
    Incremental coring of trees is the key method used in non-destructive dendrochronological sampling. Despite the advances in developing such methods, the sampling of large, high-density trees still poses a challenge in remote tropical forests. Manually operated incremental drills, while easy to transport across difficult terrain, limit sample size and can often get damaged in the sampling process, especially when trees have wood densities above 0.8 g/cmÂł. Here, we discuss the existing available alternatives and present an up-to-date incremental coring system composed of a borer coupled to a hand-held drilling machine and a support attached to the tree which can collect incremental cores of 1.5 mm in diameter and over 1.0 m in length. The support ensures stability for the drill throughout the sampling process. This system is relatively lightweight and portable, offering field flexibility and suitability for sampling in remote locations. It provides a core sample of an appropriate diameter and amount for carrying out ring-width measurements, stable isotope and radiocarbon analyses on some of the large, older trees which are now being found in the tropics. We expect that this methodology will broaden the possibilities in the now-blossoming sub-field of tropical dendrochronology.1. Introduction 2. Description 2.1. Drilling machine 2.2. Drill 2.3. Support 3. Operating instructions and system testing 4. Discussion 5. Conclusion

    Large magnetic dipole moments for neutrinos with arbitrary masses

    Get PDF
    We show that there is a general sort of models in which it is possible to have large magnetic dipole moments for neutrinos while keeping their masses arbitrarily small. Some examples of these models are considered.Comment: REVTEX, 8 pages, 2 .eps figure

    Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models.

    Get PDF
    Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation requires metabolic reprogramming of the cell, which can be captured by multi-omics, but this data remains formidably challenging to interpret and predict. Here we present a new approach that combines genome-scale metabolic modeling with transcriptomics and exometabolomics, both of which are common tools for studying dynamic population behavior. As a realistic demonstration, we developed a genome-scale model of Pseudomonas veronii 1YdBTEX2, a candidate bioaugmentation agent for accelerated metabolism of mono-aromatic compounds in soil microbiomes, while simultaneously collecting experimental data of P. veronii metabolism during growth phase transitions. Predictions of the P. veronii growth rates and specific metabolic processes from the integrated model closely matched experimental observations. We conclude that integrative and network-based analysis can help build predictive models that accurately capture bacterial adaptation responses. Further development and testing of such models may considerably improve the successful establishment of bacterial inoculants in more complex systems

    Low-energy theorems of QCD and bulk viscosity at finite temperature and baryon density in a magnetic field

    Full text link
    The nonperturbative QCD vacuum at finite temperature and a finite baryon density in an external magnetic field is studied. Equations relating nonperturbative condensates to the thermodynamic pressure for T≠0T\neq 0, ÎŒq≠0\mu_q \neq 0 and H≠0H\neq 0 are obtained, and low-energy theorems are derived. A bulk viscosity ζ(T,ÎŒ,H)\zeta(T, \mu, H) is expressed in terms of basic thermodynamical quantities describing the quark-gluon matter at T≠0T\neq 0, ÎŒq≠0\mu_q \neq 0, and H≠0H\neq 0. Various limiting cases are also considered.Comment: 12 pages; v2: title changed, new section about bulk viscosity and new references added; v3: new discussion adde

    Additional J/ΚJ/\Psi Suppression from High Density Effects

    Full text link
    At high energies the saturation effects associated to the high parton density should modify the behavior of the observables in proton-nucleus and nucleus-nucleus scattering. In this paper we investigate the saturation effects in the nuclear J/ΚJ/\Psi production and estimate the modifications in the energy dependence of the cross section as well as in the length of the nuclear medium. In particular, we calculate the ratio of J/ΚJ/\Psi to Drell-Yan cross sections and show that it is strongly modified if the high density effects are included. Moreover, our results are compared with the data from the NA50 Collaboration and predictions for the RHIC and LHC kinematic regions are presented. We predict an additional J/ΚJ/\Psi suppression associated to the high density effects.Comment: 13 pages, 5 figures, version to be published in Eur. Phys. J.

    Dilepton low pTp_T suppression as an evidence of the Color Glass Condensate

    Full text link
    The dilepton production is investigated in proton-nucleus collisions in the forward region using the Color Glass Condensate approach. The transverse momentum distribution (pTp_T), more precisely the low pTp_T region, where the saturation effects are expected to increase, is analyzed. The ratio between proton-nucleus and proton-proton differential cross section for RHIC and LHC energies is evaluated, showing the effects of saturation at small pTp_T, and presenting a Cronin type peak at moderate pTp_T. These features indicate the dilepton as a most suitable probe to study the properties of the saturated regime and the Cronin effect.Comment: 10 pages, 8 figures, replaced with the version to appear in Physical Review

    Radiative Neutrino Decay in Media

    Get PDF
    In this letter we introduce a new method to determine the radiative neutrino decay rate in the presence of a medium. Our approach is based on the generalisation of the optical theorem at finite temperature and density. Differently from previous works on this subject, our method allows to account for dispersive and dissipative electromagnetic properties of the medium. Some inconsistencies that are present in the literature are pointed-out and corrected here. We shortly discuss the relevance of our results for neutrino evolution in the early universe.Comment: 11 pages, 3 encapsulated figure
    • 

    corecore