374 research outputs found

    Path Relinking in Pareto Multi-objective Genetic Algorithms

    Get PDF
    Path relinking algorithms have proved their efficiency in single objective optimization. Here we propose to adapt this concept to Pareto optimization. We combine this original approach to a genetic algorithm. By applying this hybrid approach to a bi-objective permutation flow-shop problem, we show the interest of this approach. In this paper, we present first an Adaptive Genetic Algorithm dedicated to obtain a first well diversified approximation of the Pareto set. Then, we present an original hybridization with Path Relinking algorithm, in order to intensify the search between solutions obtained by the first approach. Results obtained are promising and show that cooperation between these optimization methods could be efficient for Pareto optimization

    A cooperative metaheuristic applied to multi-objective flow-shop scheduling problem

    Get PDF

    Adaptive mechanisms for multi-objective evolutionary algorithms

    Get PDF

    Study of the magnetic order in chromium spinel systems

    Get PDF
    We present a study of the magnetic properties of the A1-x CuxCr2X4 (A=Dp,Zn,....; X=S,Se,O,...)chromium spinel systems. Using the mean field theory, we have evaluated the nearest neighbour, the next-neighbour super-exchange, and the third next nearest neighbour interaction J1(x), J2(x) and J3(x), respectively for the Zn1-xCuxCr2Se4and J1(x), J2(x) for the Cd1-xCuxCr2Se4systems in the whole range of concentration 0≤x≤1. By using the high-temperature series expansions combined with the Padé approximants method, we have obtained the magnetic phase diagrams in Tc versus dilution c. A spin glass phase is predicted for intermediate range of concentration. The obtained results are in agreement with experimental ones obtained by magnetic measurements for the systems studied. The critical exponents associated with the magnetic susceptibility g and the correlation lengths n have been deduced. The obtained values are comparable to those of 3D Heisenberg model, and are insensitive to the dilution c.We present a study of the magnetic properties of the A1-x CuxCr2X4 (A=Dp,Zn,....; X=S,Se,O,...)chromium spinel systems. Using the mean field theory, we have evaluated the nearest neighbour, the next-neighbour super-exchange, and the third next nearest neighbour interaction J1(x), J2(x) and J3(x), respectively for the Zn1-xCuxCr2Se4and J1(x), J2(x) for the Cd1-xCuxCr2Se4systems in the whole range of concentration 0≤x≤1. By using the high-temperature series expansions combined with the Padé approximants method, we have obtained the magnetic phase diagrams in Tc versus dilution c. A spin glass phase is predicted for intermediate range of concentration. The obtained results are in agreement with experimental ones obtained by magnetic measurements for the systems studied. The critical exponents associated with the magnetic susceptibility g and the correlation lengths n have been deduced. The obtained values are comparable to those of 3D Heisenberg model, and are insensitive to the dilution c

    A fast Reoptimization approach for the dynamic technician routing and scheduling problem

    Get PDF
    The Technician Routing and Scheduling Problem (TRSP) consists in routing staff to serve requests for service, taking into account time windows, skills, tools, and spare parts. Typical applications include maintenance operations and staff routing in telecoms, public utilities, and in the health care industry. In this paper we tackle the Dynamic TRSP (D-TRSP) in which new requests appear over time. We propose a fast reoptimization approach based on a parallel Adaptive Large Neighborhood Search (RpALNS) able to achieve state-of-the-art results on the Dynamic Vehicle Routing Problem with Time Windows. In addition, we solve a set of randomly generated D-TRSP instances and discuss the potential gains with respect to a heuristic modeling a human dispatcher solution

    Enhancing Parallel Cooperative Trajectory Based Metaheuristics with Path Relinking

    Get PDF
    This paper proposes a novel algorithm combining path relinking with a set of cooperating trajectory based parallel algorithms to yield a new metaheuristic of enhanced search features. Algorithms based on the exploration of the neighborhood of a single solution, like simulated annealing (SA), have offered accurate results for a large number of real-world problems in the past. Because of their trajectory based nature, some advanced models such as the cooperative one are competitive in academic problems, but still show many limitations in addressing large scale instances. In addition, the field of parallel models for trajectory methods has not deeply been studied yet (at least in comparison with parallel population based models). In this work, we propose a new hybrid algorithm which improves cooperative single solution techniques by using path relinking, allowing both to reduce the global execution time and to improve the efficacy of the method. We test here this new model using a large benchmark of instances of two well-known NP-hard problems: MAXSAT and QAP, with competitive results.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The IRAM-30m line survey of the Horsehead PDR: II. First detection of the l-C3H+ hydrocarbon cation

    Get PDF
    We present the first detection of the l-C3H+ hydrocarbon in the interstellar medium. The Horsehead WHISPER project, a millimeter unbiased line survey at two positions, namely the photo-dissociation region (PDR) and the nearby shielded core, revealed a consistent set of eight unidentified lines toward the PDR position. Six of them are detected with a signal-to-noise ratio from 6 to 19, while the two last ones are tentatively detected. Mostly noise appears at the same frequency toward the dense core, located less than 40" away. We simultaneously fit 1) the rotational and centrifugal distortion constants of a linear rotor, and 2) the Gaussian line shapes located at the eight predicted frequencies. The observed lines can be accurately fitted with a linear rotor model, implying a 1Sigma ground electronic state. The deduced rotational constant value is Be= 11244.9512 +/- 0.0015 MHz, close to that of l-C3H. We thus associate the lines to the l-C3H+ hydrocarbon cation, which enables us to constrain the chemistry of small hydrocarbons. A rotational diagram is then used to infer the excitation temperature and the column density. We finally compare the abundance to the results of the Meudon PDR photochemical model.Comment: 9 pages, 7 PostScript figures. Accepted for publication in Astronomy \& Astrophysics. Uses aa LaTeX macro
    • …
    corecore