
Enhancing Parallel Cooperative Trajectory Based
Metaheuristics with Path Relinking

Gabriel Luque
Universidad de Málaga, Andalucía Tech
E.T.S.I. Informática, Campus Teatinos,

29071 Málaga (España)

gabriel@lcc.uma.es

Enrique Alba
Universidad de Málaga, Andalucía Tech
E.T.S.I. Informática, Campus Teatinos,

29071 Málaga (España)

eat@lcc.uma.es

ABSTRACT

This paper proposes a novel algorithm combining path re-
linking with a set of cooperating trajectory based parallel
algorithms to yield a new metaheuristic of enhanced search
features. Algorithms based on the exploration of the neigh-
borhood of a single solution, like simulated annealing (SA),
have offered accurate results for a large number of real-world
problems in the past. Because of their trajectory based na-
ture, some advanced models such as the cooperative one
are competitive in academic problems, but still show many
limitations in addressing large scale instances. In addition,
the field of parallel models for trajectory methods has not
deeply been studied yet (at least in comparison with par-
allel population based models). In this work, we propose
a new hybrid algorithm which improves cooperative single
solution techniques by using path relinking, allowing both
to reduce the global execution time and to improve the ef-
ficacy of the method. We test here this new model using
a large benchmark of instances of two well-known NP-hard
problems: MAXSAT and QAP, with competitive results.

Categories and Subject Descriptors

F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity; G.1.0 [Mathematics of Com-
puting]: General—Parallel algorithms

General Terms

Algorithms

Keywords

parallelism, trajectory based metaheuristics, path relinking

1. INTRODUCTION
Metaheuristics are general heuristics that provide sub-

optimal solutions in a reasonable time for various optimiza-
tion problems [10]. According to the number of solutions

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2662-9/14/07 ...$15.00.

http://dx.doi.org/10.1145/2576768.2598337.

they manage during optimization process, they fall into two
categories: trajectory based methods and population based
techniques. On the one hand, a population based meta-
heuristic makes use of a randomly generated population of
solutions. The initial population is enhanced through a nat-
ural evolution process. At each generation of the process,
the whole population or a part of the population is replaced
by newly generated individuals (often the best ones). On the
other hand, a trajectory based algorithm starts with a single
initial solution which, at each step of the search, is replaced
by another (often better) solution found in its neighborhood.

Although the use of metaheuristics allows to significantly
reduce the temporal complexity of the search process, the ex-
ploration remains time-consuming for many industrial and
engineering problems. In this context, parallelism emerges
as a useful strategy to reduce the computational times down
to affordable values. The point is that the parallel versions
of metaheuristics allows not only to speed up the compu-
tations, but also to improve the quality of the provided so-
lutions [1, 16]. For both trajectory-based and population-
based metaheuristics, different parallel models have been
proposed in the literature. In general, these parallel mod-
els are mostly oriented to study parallel population-based
algorithms, but it actually exists a gap in the studies about
parallel models for single solution methods from which some-
thing could be gained for other researchers.

The focus of this paper is on parallel trajectory-based
metaheuristics. Usually, three major parallel models for
this kind of algorithms exist: the parallel exploration of the
neighborhood, the parallel evaluation of each solution, and
the multi-start model. The two first models speed up the
execution of the method without changing the semantics of
the algorithm in comparison with a sequential exploration.
The last one is maybe more interesting from the algorith-
mic point of view since it can change the behavior of the
method with respect to its serial counterpart. The multi-
start model lies in launching in parallel several independent
or cooperative homo/heterogeneous algorithms. Usually, in
its cooperative mode, subalgorithms of the parallel multi-
start model exchange information (solutions) during execu-
tion and when the target subalgorithm receives a solution,
it continues the search using the previous one or the newly
received one according to a selection scheme. The problem
of this cooperative model is that some interesting informa-
tion is lost since either the new solution is discarded (it is
not chosen by the selection scheme) and no new information
is incorporated, or it is accepted and the previous historical
information of the subalgorithm is lost.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62901132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Parallel models for trajectory based methods: parallel exploration of the neighborhood (left), the
multi-start model (center), and the parallel evaluation of each solution (right).

This work proposes a new parallel yet simple model that
extends the cooperative multi-start model to avoid the afore-
mentioned flaw. In this case, when a solution is received, we
use the path relinking technique to generate a set of new
candidate solutions which combine the information of the
new solution and the previous tentative solution of the tar-
get subalgorithm. Therefore, the subalgorithm incorporates
new information but, at the same time, it keeps information
of its own search. The utilization of path relinking opens
some design alternatives: which subalgorithms cooperate,
which solution of the set generated by path relinking will
be selected to continue the search, . . . Then, the main goal
of this paper is to propose a new cooperative scheme and
study the different design alternatives. This parallel model
has been evaluated with two well-known NP-hard problems:
MAXSAT and QAP problems [15].

This paper is organized as follows. The next section (Sec-
tion 2) introduces some background information about par-
allel trajectory based methods and path relinking. Section 3
presents our proposed parallel model. Then we describe the
experimental design used in this paper. Later, we discuss
experimental results in Section 5 and finally we summarize
the conclusions and give some hints on the future work.

2. BACKGROUND
In this section, we present some background information

about the basic techniques that we use to design our new
proposal described in this paper.

2.1 Trajectory based techniques
Trajectory based methods, illustrated in Algorithm 1, are

single solution-based metaheuristics dedicated to the im-
provement only one solution in its neighborhood. They start
their exploration process from an initial solution randomly
generated or provided by another metaheuristic. This so-
lution is then updated during a certain number of steps.
At each step, the current solution is replaced by another
(often the better) one found in its neighborhood. These
methods are mainly characterized by: an internal memory
storing the state of the search, a strategy for the selection
of the initial solution, a generator of candidate solutions i.e.
the neighborhood, and a selection policy of the candidate
moves. Three major trajectory based algorithms are largely

used: Hill Climbing (HC) [15], Simulated Annealing (SA)
[13], and Tabu Search (TS) [11].

Generate(s(0));
t := 0;
while not Termination Criterion(s(t) do

m(t) := SelectAcceptableMove(s(t));
s(t+ 1) := ApplyMove(m(t),s(t));
t := t+ 1;

end while

Algorithm 1: Trajectory based technique skeleton
pseudo-code

Although these technique allows to obtain very accurate
results for a large number of problems, some advanced mech-
anisms have to be used to tackle with the high requirements
of the industrial problems. One of these mechanisms is the
utilization of parallel models. In the literature are usually
identified three major parallel distributed models of this
kind of method [2]: the parallel exploration of the neigh-
borhood, the multi-start model, and the parallel evaluation
of each solution (see Figure 1).

• Parallel multi-start model: The model consists in
launching in parallel several independent or coopera-
tive homo/heterogeneous single solution method. Each
subalgorithm is often initialized with a different solu-
tion. The independent approach is widely exploited
because it is natural and easy for the user. In this
case, the semantics of the model is the same as the
serial execution. That is to say the results obtained
with N parallel independent methods is the same as
that provided by N algorithms performed in a serial
way on a single machine. The parallelism allows to
efficiently enhance the robustness of the execution.

In its cooperative mode, subalgorithms of the parallel
multi-start model exchange information during execu-
tion. Usually that information is a solution.

• Parallel exploration of the neighborhood model:
This parallel model is a kind of farmer/worker model
allowing to speed up the exploration of the possible

moves without changing the semantics of the algorithm
in comparison with a sequential exploration. At the
beginning of each iteration of the algorithm, the farmer
sends the current solution to a pool of workers. Each
worker explores some neighboring candidates, and re-
turns back the results to the farmer.

• Parallel evaluation of solution model: The fitness
of each solution is evaluated in a parallel centralized
way. This kind of parallelism could be efficient if the
evaluation function is CPU time-consuming and/or IO
intensive.

In the literature, we can found parallel versions of the most
popular trajectory based metaheuristics such as parallel SA
[8, 4], parallel VNS [17, 7], parallel TS [3, 6], . . . But most
of them are focused on the application to be solved and they
use classical parallel models. The aim of this paper is the
parallel model itself, our goal is to provide a new mechanism
to build more efficient and accurate parallel solution-based
techniques.

The two last models uses the parallel platform to speedup
the search procedure but they don’t change the behavior of
the method. On the contrary, the first parallel model using
cooperation modify the dynamics of the technique. In this
work, we focus in this kind of methods.

2.2 Path Relinking
Path relinking (PR) [12] was originally proposed into the

context of scatter search by extension of its basic philoso-
phy. PR is based on the generation of paths between high
quality solutions. This leads to a broader conception of the
meaning of creating combinations of solutions. Such combi-
nations may be conceived to arise by generating paths be-
tween and beyond selected solutions in neighborhood space,
rather than in Euclidean space. This conception is reinforced
by the fact that a path between solutions in a neighborhood
space will generally yield new solutions that share a signif-
icant subset of attributes contained in the parent solutions,
in varying “mixes” according to the path selected and the
location on the path that determines the solution currently
considered. The character of such paths is easily specified by
reference to solution attributes that are added, dropped or
otherwise modified by the moves executed in neighborhood
space. To generate the desired paths, it is only necessary to
select moves that perform the following role: upon starting
from an initiating solution, the moves must progressively
introduce attributes contributed by a guiding solution (or
reduce the distance between attributes of the initiating and
guiding solutions). In Figure 2, we can observe the scheme
followed for this technique to obtain new solutions.

3. OUR PROPOSEDMODEL
Our goal is to design a new parallel model for trajectory

based metaheuristics which allows to reduce the global ex-
ecution time but, at the same time, it also improves the
efficacy of the exploration of the search space. A number of
papers has been devoted to this topic for parallel approaches
involving population based methods (some of them also in-
volving trajectory-based ones) but it is not a very studied
field for pure parallel trajectory based metaheuristics.

Since we want to improve the efficacy of the resulting
parallel algorithm, we focus on the multi-start cooperative

paradigm (the other two models do not change the dynamics
of the method with respect to the serial version). As dis-
cussed in the introduction, a problem in classical approaches
of multi-start models for trajectory-based metaheuristics is
the lost of information. Indeed, when a subalgorithm re-
ceives a solution from other subalgorithm, it has to choose
whether it continues the search either with the current one
or the newly received one, loosing the stored information in
the discarded solution.

We propose a new model in which we do not have to choose
between the two solutions, but generate a new solution with
the main features of both solutions. With this aim, we can
use some mechanisms, similar to the recombination operator
of population based method, which combine both solutions
[14]. But, in this work, we propose the utilization of a more
advanced technique such as path relinking. We run this
technique to generate some paths using the current solution
and the incoming solution as initial points. The generated
path provides the parallel technique of a set of candidate
solutions to continue the search, and therefore, a selection
scheme is needed to chose one.

Several important design issues arise from the general
model proposed in this work:

• Cooperation scheme: it indicates what and how
subalgorithms cooperate each other.

• Selection scheme: it refers what solution is selected
from the set of candidate ones generated by PR.

For each design feature we have proposed some alter-
natives. In the previous existing multi-start models, the
features of the incoming solution were not very important
rather than it fitness value, but now, this issue can provoke
an important impact in the search behaviour. Different pos-
sible cooperation schema are analyzed here:

• Predefined: in this case, each subalgorithm receives
a single solution (the sending island is defined by the
topology). Therefore, any subalgorithm only receives
a single solution which is combined with the local one.

• Depending of the fitness value (best): in this
case, each subalgorithm receives a solution from each
subalgorithm which composes the global method. Now,
the subalgorithm has to select one solution from this
set of candidate solutions, that will be combined with
the current one. In this strategy, the selection mech-
anism is based on the fitness value of the incoming
solutions. In this study, we select the solution with
the best fitness.

• Depending of the features of the solution (dis-
tance): as in the previous one, each subalgorithm re-
ceives several solutions (one per subalgorithm) and it
has to select one. In this case, the selection will be
performed by using a genotypic distance (a diversity
measure) among the solutions and we select the far-
thest one. This distance depends on how the solution
are represented in the algorithm.

• Random: as in the previous scenarios, each subalgo-
rithm receives several solutions (one per subalgorithm)
but in this strategy, random one is selected from all the
incoming solutions.

Figure 2: Path relinking scheme.

Using one of the these strategies, our proposed technique
obtains the second initial solution (the first initial one is the
current point of the subalgorithm) and then, we can apply
the path relinking to generate a path. That path provides
some new candidate solutions and the method has to select
one of them to replace the current one and continue the
search process. To choose the new solution we also take into
account some alternatives:

• Best: the algorithm selects the best solution in the
generated path:

maxs∈S(f(s)), (1)

where S is a set of solution composed by the points
visited during the path generated by PR and f is the
fitness function (assuming the maximization case).

• Most shared information: in this case, the subal-
gorithm selects the solution sharing more information
from initial solutions. To do this, we calculate the
genotypic distance among the solutions and then we
apply the next equation:

mins∈S(max(dist(s, s′), dist(s, s′′))), (2)

where S is a set of solution composed by the points
visited during the path generated by PR, s′ and s′′ are
the initial solutions and dist is the genotypic distance
between two solutions. With this process we simulta-
neously minimize the distance of the new solution with
respect to the two initial ones.

• Random: in this case, the subalgorithm select a ran-
dom solution from the path without taking into ac-
count its quality or any other feature.

In the experimental section we study the behaviour and
the performance of each strategy.

4. EXPERIMENTAL DESIGN
In this section, we describe the experimental design fol-

lowed in this work. First, we present the problems and the
instances used in the experiments. Later, we explain the al-
gorithm used to test our parallel model. Finally, we present
the methodology and parameters used in the experiments.

4.1 Benchmark
In order to make more relevant contribution, we have se-

lected a wide set of instances from two very different prob-
lems: MAXSAT and QAP.

MAXSAT: The satisfiability (SAT) problem is commonly
recognized as a fundamental problem in computer science,
automated reasoning, mathematical logic, and related fields.
The MAXSAT is a variant of this general problem.

Formally, the SAT problem can be formulated as follows.
Let U = {u1, . . . , un} be a set of n Boolean variables. A
truth assignment for U is a function t : U → {true, false}.
Two literals, u and ¬u, can match with each variable. A
literal u (resp. ¬u) is true under t if and only if t(u) = true
(resp. t(¬u) = false). A set C of literals is called a clause
and it represents the disjunction (or logical connective). A
set of clauses is called a formula. A formula f is interpreted
as a formula of the propositional calculus in conjunctive nor-
mal form (CNF) so that a truth assignment t satisfies a
clause C iff at least one literal u ∈ C is true under t. Fi-
nally, t satisfies f iff it satisfies every clause in f . The SAT
problem consists of a set of n variables {u1, . . . , un} and
a set of m clauses C1, . . . , Cm. The goal is to determine
whether there exists or not an assignment of truth values to
variables that makes the formula f = C1 ∧ · · · ∧Cm in CNF
satisfiable. Among the extensions to SAT, MAXSAT [9] is
probably the most known one. In this case, a parameter
K is given and the problem is to determine whether there
exists an assignment t of truth values to variables such that
at least K clauses are satisfied. SAT can be considered as a
special case of MAXSAT when K equals the number m of
clauses.

In the experiments we use five instances from standard
benchmark SATLIB1. We use the instances: uf250-01.cnf

- uf250-05.cnf. Each instance has 250 variables and 1065
clauses, and all them are in the transition phase.

QAP: The Quadratic Assignment Problem (QAP) is a well-
known NP-hard combinatorial optimization problem, which
is the core of many real-world optimization problems [9].
QAP models many applications in diverse areas. In par-

1http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html

ticular the following problems can be formulated as special
cases of the QAP: the Traveling Salesman Problem (TSP),
the Fragment Assembly Problem (FAP), Scheduling prob-
lems, the Facility Layout Problem, among others.

Let P be a set of n facilities and L a set of n locations.
For each pair of locations i and j, an arbitrary distance is
specified rij and for each pair of facilities p and q, a flow
is specified wpq. The QAP consists of assigning to each
location in L one facility in P in such manner that the total
cost of the assignment is minimized. Each location can only
contain one facility and all facilities must be assigned to one
location. For each pair of locations, the cost is calculated
as the product of the distance between the locations and
the flow associated with the facilities in the locations. The
total cost is the sum of all the costs associated with each
pair of locations. One solution to this problem is a bijection
between L and P , that is, x : L → P such that x is bijective.
Without loss of generality, we can just assume that L = P =
{1, 2, ..., n} and each solution x is a permutation in Sn, the
set permutations of {1, 2, ..., n}.

The cost function to be minimized can be formally defined
as:

f(x) =
n∑

i,j=1

ri,j · wx(i),x(j) (3)

We chose the five most complex QAP instances of
QAPLIB Library2. The complexity of the QAP instances
is given by their size and autocorrelation length ℓ [5]. In
consequence, we selected esc128, tho150, tai100b, tai150b,
and tai256c instances that are described in Table 1.

Table 1: The five most complex instances of
QAPLIB.

Instance Size ξ ℓ Lowest Known Cost

esc128 128 32 32 64

tho150 150 41.19 44.174 8.13E+06

tai100b 100 35.472 39.613 1.19E+09

tai150b 150 40.458 42.947 4.99E+08

tai256c 256 64 64 4.48E+07

4.2 Algorithm
We have used the well-known simulated annealing algo-

rithm to test our parallel model. Simulated annealing (SA)
[13] is a stochastic optimization technique, which has its
origin in statistical mechanics. It is based upon a cool-
ing procedure used in industry. This procedure heats the
material to a high temperature so that it becomes a liquid
and the atoms can move relatively freely. The tempera-
ture is then slowly lowered so that at each temperature the
atoms can move enough to begin adopting the most stable
configuration. In principle, if the material is cooled slowly
enough, the atoms are able to reach the most stable (opti-
mum) configuration. This smooth cooling process is known
as annealing. Algorithm 2 shows a scheme of SA. First at
all, the parameter T , called the temperature, and the so-
lution, are initialized. The solution s1 is accepted as the
new current solution if δ = f(s1) − f(s0) < 0. Stagna-
tions in local optimum are prevented by accepting also so-
lutions which increase the objective function value with a
probability exp(−δ/T) if δ > 0. This process is repeated

2http://www.seas.upenn.edu/qaplib/

several times to obtain good sampling statistics for the cur-
rent temperature. The number of such iterations is given
by the parameter Markov Chain length, whose name al-
ludes the fact that the sequence of accepted solutions is
a Markov chain (a sequence of states in which each state
only depends on the previous one). Then the temperature
is decremented and the entire process repeated until a frozen
state is achieved at Tmin. The value of T usually varies from
a relatively large value to a small value close to zero.

t = 0
initialize(T)
s0 = Initial Solution()
v0 = Evaluate(s0)
repeat

repeat
t = t + 1
s1 = Generate(s0,T)
v1 = Evaluate(s0,T)
if Accept(v0,v1,T) then

s0 = s1
v0 = v1

end if
until t mod Markov Chain length == 0
T = Update(T)

until ’loop stop criterion’ satisfied

Algorithm 2: Scheme of the Simulated Annealing(SA)
Algorithm.

In order to apply SA to solve our problems, we have to
define how a solution in the neighborhood is generated (func-
tion Generate in Algorithm 2). Since we use a bitstring to
represent a solution for MAXSAT, we use the standard bit-
flip operator (it change a single bit from 0 to 1 or from 1 to
0) to generate a neighbor from the current solution. In the
QAP case, we use an integer permutation in order to repre-
sent a solution inside the algorithm and the swap operator
(the values of two positions are interchanged) is the selected
mechanism to build a new solution from the current one.

In our parallel approach we run eight independent in-
stances (subalgorithms) of SA which asynchronously coop-
erate every 50 iterations. As cooperation scheme, we use
the four alternatives presented in Section 3. When a new
solution arrives to the target subalgorithm, the PR method
is applied to generate a path. To build this path, first, it
analyzes the component which are different between the two
initial solutions, and then, each visited point in the path is
generated by changing one of these components.

This way of building the path allows us to obtain efficient
implementations of the selection scheme (see Section 3). For
example, we do not need to build the whole path when we
want to select a random solution from the path or when we
plan to use a solution which maximizes the shared informa-
tion, since they can be calculated a priori only generating a
single solution. However, to obtain the best solution of the
path, all the visited points should be generated and eval-
uated. In order to the reduce the computation cost of this
last strategy, we will use partial evaluations instead of a com-
plete evaluation of the solution. This allows to reduce the
computational cost of the resulting algorithm. For example,

in the MAXSAT problem, when the variation operator only
modify a single logic variable, we only have to analyze the
effect on a low percentage (2-5%) of clauses in the instance.
Also, in the QAP problem, we can reduce the computa-
tional complexity of the evaluation of a solution from O(n2)
(a complete evaluation) to O(n) (when a partial evaluation
is performed).

4.3 Methodology
This subsection provides the reader with the details of the

experiments performed to evaluate the new parallel model
proposed for trajectory-based metaheuristics. We have ana-
lyzed 12 different variants (three selection strategies and four
cooperation schema). We use the terminology SA X Y,
where X is the selection mechanism and Y is the coop-
eration strategy. The possible values for X are: rnd for
random, bst for best, and inf for maximizing the shared
information scheme. The possible values for Y are: pre for
the predefined topology, bst for the best solution, dst for
the strategy based on the distance, and rnd for the random
one. We will also compare our proposed model with a paral-
lel version using the multi-start no-cooperative model, also
known as independent run model (iSA) , and a parallel ver-
sion using the classical multi-start cooperative model (cSA),
in which incoming solutions just replace the current one. In
order to perform fair comparisons, the stopping condition is
to find the optimal solution.

The experiments have been executed on a Intel Pentium
IV 2.8GHz with 512MB running SuSE Linux 8.1. Because of
the stochastic nature of the algorithms, we perform 30 inde-
pendent runs of each test to gather meaningful experimental
data and apply statistical confidence metrics to validate our
results. First, we use the Kolmogorov-Smirnov test to check
whether the data follows a normal distribution or not. If so,
then we carry out an ANOVA test to compare the means;
otherwise, a Kruskal-Wallis test is used to compare the me-
dians. In each case, a confidence level of 99 % is used.

5. ANALYSIS OF THE EXPERIMENTS
In this section we analyze the results of the different vari-

ants of our proposed model. First, we study the accuracy of
the methods and then, we discuss their computational cost.

5.1 Accuracy
Let’s first compare the accuracy of the different algo-

rithms. Since there are many different problem instances
and analyzing them thoroughly would hinder us from draw-
ing clear conclusions, we have summarized in Table 2 the
results. In this table we only study the accuracy of the tech-
niques. Since the stopping criterion is to find the optimal
solution (if it is possible since some variants get stuck in a
local one), to measure the accuracy we use the number of
instances solved by the method (the algorithm was able to
find the optimum). We use two different values: the first
one is the number of instances in which the algorithm found
the optimal solution in at least one run; and the second one
is the number of instances in which the algorithm found the
optimal solution in robust way (this means the algorithm
find the optimum in at least 25 out 30 independent runs).
The range of both values is between 0 and 10 (5 instances
of QAP plus 5 instances of MAXSAT)

From Table 2, we can obtain several interesting conclu-
sions. First, we can note that cooperative schema signif-

Cooperation scheme Selection scheme
bst rnd inf

pre 9 - 5 7 - 3 8 - 3
bst 10 - 10 10 - 6 10 - 8
rnd 10 - 6 8 - 3 10 - 4
dst 10 - 10 9 - 4 10 - 8

iSA 5 - 0
cSA 7 - 2

Table 2: Accuracy of the algorithms.

icantly outperform to non-cooperative ones. In fact, iSA
is not able to find the solution to any instance in a robust
way. A second important conclusion is that all the variants
of our model outperform traditional parallel models for tra-
jectory based methods. This results shows that the explo-
ration scheme induced by our model is more accurate than
the other parallel algorithms in the context of this problem.

Analyzing the different variants of the proposed model, it
can be seen that the models that make use of some informa-
tion from the incoming solutions (fitness, distance or shared
information) outperform the variants which are based on
other features (random or predefined topologies). This is
an expected result since the utilization of additional infor-
mation during the process allows the method to have more
elements to guide its search.

In concrete, we can see that cooperation strategies using
the best incoming solution or the farthest solution are the
best variants. This is a quite surprising result, since these
techniques promote very different search behaviours (the bst
strategy favors the intensification while the dst scheme pro-
motes the diversification) but both methods get very high-
quality solutions. A similar behaviour can be observe when
we analyze the different selection method: the bst (which
promotes intensification) and inf (which promotes diversifi-
cation) strategies obtain equivalent results. Although the re-
sult are similar, we can notice a clear trend toward the tech-
niques which favor the intensification. In fact, SA bst bst
and SA dst bst are the only ones which can solve all the
instances in all the runs.

5.2 Computational cost
Now, we focus on the computational cost: numerical per-

formance (number of partial evaluations) and wall-clock
time (in seconds). In order to perform a fair compari-
son, we only consider the algorithms which get similar re-
sults. In concrete, we compare SA bst bst, SA bst inf,
SA dst bst y SA dst inf using the instances which are
robustly solved by these methods. In Figure 3, we show the
numerical performance (left figure) and the runtime (right
figure). Both values are normalized with respect to the value
obtained by SA dst inf.

From Figure 3, we can distinguish three different be-
haviours according to the statistical analysis (all the results
are statistically different with the exception of SA X inf
models) . The first behaviour is the presented by
SA dst bst which is the variant with the highest compu-
tational cost. This is expected since the initial solutions
selected by dst cooperation strategy are very different and
therefore the generated path are longer and it also has to
evaluate all the generated solution to find the best solution
in the path (bst selection scheme). The second behaviour

(a) (b)

Figure 3: (a) Numerical performance (number of partial evaluations) and (b) execution time (seconds).

is the provoked by SA bst bst which is the second variant
with a higher computational cost. This high cost is due to
the utilization of bst selection scheme, in which the vari-
ant has to evaluate all the solutions in the path, although
in this case the path are usually shorter than in the previ-
ous variant (SA dst bst). Finally, the last behaviour is the
presented by SA X inf strategies which need less runtime
to find the solution. This is mainly due to the inf selection
scheme only need to evaluate a single solution in the path.

Summarizing we can conclude that variants using the best
solution in the path obtain the best accurate results but they
need more execution time to find these high-quality solu-
tions. By contrast, strategies using the shared information
between solutions are faster but the solution obtained are
slightly worse.

6. CONCLUSIONS AND FUTUREWORKS
In this paper, we have developed a new parallel model for

trajectory based methods, which improves the cooperation
phase by means of adding path relinking technique. The
utilization of this last technique allow to generate a wide set
of candidate solutions to continue the search. This set is
composed by solutions which include information from the
current solution of the subalgorithm and also information
from the incoming solution.

The results show that our proposed method is more ac-
curate and efficient than the existing one. We have studied
different design alternatives such as the several cooperation
schema or different mechanism to select the next solution
from the set of solutions generated by path relinking. Each
variant has its own advantages and drawbacks. For example,
we saw that using the best solution of the path, the algo-
rithm obtains very accurate solution but the computation
cost is higher.

As future work, we plan to extend this study to other
problems or other trajectory based methods for generalizing
the conclusion of this paper. In this paper, we have ob-
served that the evaluation of the point visited by the path
generated by PR is a quite high-consuming process, then we
want to analyze different alternatives to perform that pro-
cess (maybe using some theoretical results about the search
space) and then speed up the search.

Acknowledgments

The authors acknowledge funds from the Spanish Ministry of
Sciences and Innovation European FEDER, under contract
TIN2011-28194 (roadME http://roadme.lcc.uma.es), An-
dalućıa Tech, and from the project number 8.06/5.47.4142 in
collaboration with the VSB-Technical University of Ostrava.

7. REFERENCES

[1] E. Alba, editor. Parallel Metaheuristics: A New Class

of Algorithms. Wiley, 2005.

[2] E. Alba, G. Luque, and S. Nesmachnow. Parallel
metaheuristics: recent advances and new trends.
International Transactions in Operational Research,
20(1):1–48, 2013.

[3] W. Bożejko, J. Pempera, and C. Smutnicki. Parallel
tabu search algorithm for the hybrid flow shop
problem. Computers & Industrial Engineering,
65(3):466–474, 2013.

[4] Y.-L. Chang, K.-S. Chen, B. Huang, W.-Y. Chang,
J. A. Benediktsson, and L. Chang. A parallel
simulated annealing approach to band selection for
high-dimensional remote sensing images. Selected
Topics in Applied Earth Observations and Remote

Sensing, IEEE Journal of, 4(3):579–590, 2011.

[5] F. Chicano, G. Luque, and E. Alba. Autocorrelation
measures for the quadratiec assignment problem.
Applied Mathematics Letters, 25(4):698–705, 2012.

[6] J.-F. Cordeau and M. Maischberger. A parallel
iterated tabu search heuristic for vehicle routing
problems. Computers & Operations Research,
39(9):2033–2050, 2012.

[7] M. Eskandarpour, S. H. Zegordi, and E. Nikbakhsh. A
parallel variable neighborhood search for the
multi-objective sustainable post-sales network design
problem. International Journal of Production
Economics, 145(1):117–131, 2013.

[8] A. Ferreiro, J. Garćıa, J. López-Salas, and
C. Vázquez. An efficient implementation of parallel
simulated annealing algorithm in gpus. Journal of
Global Optimization, 57(3):863–890, 2013.

[9] M. Garey and D. Johnson. Computers and

Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.

[10] M. Gendreau. Handbook of metaheuristics, volume
146. Springer, 2010.

[11] F. Glover. Tabu Search, part I. ORSA, Journal of

Computing, (1):190–206, 1989.

[12] F. Glover, M. Laguna, and R. Mart́ı. Fundamentals of
scatter search and path relinking. Control and
cybernetics, 39(3):653–684, 2000.

[13] S. Kirkpatrick, C. Gellatt, and M. Vecchi.
Optimization by Simulated Annealing. Science,
220(4598):671–680, 1983.

[14] G. Luque, F. Luna, and E. Alba. A new parallel
cooperative model for trajectory based metaheuristics.
In Distributed Computing and Artificial Intelligence,
pages 559–567. Springer, 2010.

[15] C. Papadimitriou. The Complexity of Combinatorial

Optimization Problems. Master’s thesis, Princeton
University, 1976.

[16] E.-G. Talbi. Parallel combinatorial optimization,
volume 58. John Wiley & Sons, 2006.

[17] M. Yazdani, M. Amiri, and M. Zandieh. Flexible
job-shop scheduling with parallel variable
neighborhood search algorithm. Expert Systems with

Applications, 37(1):678–687, 2010.

