835 research outputs found

    Improving weather and climate predictions by training of supermodels

    Get PDF
    Recent studies demonstrate that weather and climate predictions potentially improve by dynamically combining different models into a so-called "supermodel". Here, we focus on the weighted supermodel - the supermodel's time derivative is a weighted superposition of the time derivatives of the imperfect models, referred to as weighted supermodeling. A crucial step is to train the weights of the supermodel on the basis of historical observations. Here, we apply two different training methods to a supermodel of up to four different versions of the global atmosphere-ocean-land model SPEEDO. The standard version is regarded as truth. The first training method is based on an idea called cross pollination in time (CPT), where models exchange states during the training. The second method is a synchronization-based learning rule, originally developed for parameter estimation. We demonstrate that both training methods yield climate simulations and weather predictions of superior quality as compared to the individual model versions. Supermodel predictions also outperform predictions based on the commonly used multi-model ensemble (MME) mean. Furthermore, we find evidence that negative weights can improve predictions in cases where model errors do not cancel (for instance, all models are warm with respect to the truth). In principle, the proposed training schemes are applicable to state-of-the-art models and historical observations. A prime advantage of the proposed training schemes is that in the present context relatively short training periods suffice to find good solutions. Additional work needs to be done to assess the limitations due to incomplete and noisy data, to combine models that are structurally different (different resolution and state representation, for instance) and to evaluate cases for which the truth falls outside of the model class

    A longitudinal analysis of university rankings

    Get PDF
    Pressured by globalization and the increasing demand for public organisations to be accountable, efficient and transparent, university rankings have become an important tool for assessing the quality of higher education institutions. It is therefore important to carefully assess exactly what these rankings measure. In this paper, the three major global university rankings, The Academic Ranking of World Universities, The Times Higher Education and the Quacquarelli Symonds World University Rankings, are studied. After a description of the ranking methodologies, it is shown that university rankings are stable over time but that there is variation between the three rankings. Furthermore, using Principal Component Analysis and Exploratory Factor Analysis, we show that the variables used to construct the rankings primarily measure two underlying factors: a universities reputation and its research performance. By correlating these factors and plotting regional aggregates of universities on the two factors, differences between the rankings are made visible. Last, we elaborate how the results from these analysis can be viewed in light of often voiced critiques of the ranking process. This indicates that the variables used by the rankings might not capture the concepts they claim to measure. Doing so the study provides evidence of the ambiguous nature of university ranking's quantification of university performance.Comment: 26 page

    Complete synchronization of chaotic atmospheric models by connecting only a subset of state space

    Get PDF
    Connected chaotic systems can, under some circumstances, synchronize their states with an exchange of matter and energy between the systems. This is the case for toy models like the Lorenz 63, and more complex models. In this study we perform synchronization experiments with two connected quasi-geostrophic (QG) models of the atmosphere with 1449 degrees of freedom. The purpose is to determine whether connecting only a subset of the model state space can still lead to complete synchronization (CS). In addition, we evaluated whether empirical orthogonal functions (EOF) form efficient basis functions for synchronization in order to limit the number of connections. In this paper, we show that only the intermediate spectral wavenumbers (5–12) need to be connected in order to achieve CS. In addition, the minimum connection timescale needed for CS is 7.3 days. Both the connection subset and the connection timescale, or strength, are consistent with the time and spatial scales of the baroclinic instabilities in the model. This is in line with the fact that the baroclinic instabilities are the largest source of divergence between the two connected models. Using the Lorenz 63 model, we show that EOFs are nearly optimal basis functions for synchronization. The QG model results show that the minimum number of EOFs that need to be connected for CS is a factor of three smaller than when connecting the original state variables

    Strong future increases in Arctic precipitation variability linked to poleward moisture transport

    Get PDF
    The Arctic region is projected to experience amplified warming as well as strongly increasing precipitation rates. Equally important to trends in the mean climate are changes in interannual variability, but changes in precipitation fluctuations are highly uncertain and the associated processes are unknown. Here, we use various state-of-the-art global climate model simulations to show that interannual variability of Arctic precipitation will likely increase markedly (up to 40% over the 21st century), especially in summer. This can be attributed to increased poleward atmospheric moisture transport variability associated with enhanced moisture content, possibly modulated by atmospheric dynamics. Because both the means and variability of Arctic precipitation will increase, years/seasons with excessive precipitation will occur more often, as will the associated impacts

    Interests, Norms, and Support for the Provision of Global Public Goods: The Case of Climate Cooperation

    Get PDF
    Mitigating climate change requires countries to provide a global public good. This means that the domestic cleavages underlying mass attitudes toward international climate policy are a central determinant of its provision. We argue that the industry-specific costs of emission abatement and internalized social norms help explain support for climate policy. To evaluate our predictions we develop novel measures of industry-specific interests by cross-referencing individuals? sectors of employment and objective industry-level pollution data and employ- ing quasi-behavioral measures of social norms in combination with both correlational and conjoint-experimental data. We find that individuals working in pollutive industries are 7 percentage points less likely to support climate cooperation than individuals employed in cleaner sectors. Our results also suggest that reciprocal and altruistic individuals are about 10 percentage points more supportive of global climate policy. These findings indicate that both interests and norms function as complementary explanations that improve our under- standing of individual policy preferences

    Supermodeling Improving Predictions with an Ensemble of Interacting Models

    Get PDF
    The modeling of weather and climate has been a success story. The skill of forecasts continues to improve and model biases continue to decrease. Combining the output of multiple models has further improved forecast skill and reduced biases. But are we exploiting the full capacity of state-of-the-art models in making forecasts and projections? Supermodeling is a recent step forward in the multimodel ensemble approach. Instead of combining model output after the simulations are completed, in a supermodel individual models exchange state information as they run, influencing each other's behavior. By learning the optimal parameters that determine how models influence each other based on past observations, model errors are reduced at an early stage before they propagate into larger scales and affect other regions and variables. The models synchronize on a common solution that through learning remains closer to the observed evolution. Effectively a new dynamical system has been created, a supermodel, that optimally combines the strengths of the constituent models. The supermodel approach has the potential to rapidly improve current state-of-the-art weather forecasts and climate predictions. In this paper we introduce supermodeling, demonstrate its potential in examples of various complexity, and discuss learning strategies. We conclude with a discussion of remaining challenges for a successful application of supermodeling in the context of state-of-the-art models. The supermodeling approach is not limited to the modeling of weather and climate, but can be applied to improve the prediction capabilities of any complex system, for which a set of different models exists

    Self-tuning experience weighted attraction learning in games

    Get PDF
    Self-tuning experience weighted attraction (EWA) is a one-parameter theory of learning in games. It addresses a criticism that an earlier model (EWA) has too many parameters, by fixing some parameters at plausible values and replacing others with functions of experience so that they no longer need to be estimated. Consequently, it is econometrically simpler than the popular weighted fictitious play and reinforcement learning models. The functions of experience which replace free parameters “self-tune” over time, adjusting in a way that selects a sensible learning rule to capture subjects’ choice dynamics. For instance, the self-tuning EWA model can turn from a weighted fictitious play into an averaging reinforcement learning as subjects equilibrate and learn to ignore inferior foregone payoffs. The theory was tested on seven different games, and compared to the earlier parametric EWA model and a one-parameter stochastic equilibrium theory (QRE). Self-tuning EWA does as well as EWA in predicting behavior in new games, even though it has fewer parameters, and fits reliably better than the QRE equilibrium benchmark

    Efficiency in a forced contribution threshold public good game

    Get PDF
    We contrast and compare three ways of predicting efficiency in a forced contribution threshold public good game. The three alternatives are based on ordinal potential, quantal response and impulse balance theory. We report an experiment designed to test the respective predictions and find that impulse balance gives the best predictions. A simple expression detailing when enforced contributions result in high or low efficiency is provided
    corecore